Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 991
Filtrer
1.
J Colloid Interface Sci ; 675: 1-13, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38964120

RÉSUMÉ

Birnessite-type MnO2 (δ-MnO2) exhibits great potential as a cathode material for aqueous zinc-ion batteries (AZIBs). However, the structural instability and sluggish reaction kinetics restrict its further application. Herein, a unique protons intercalation strategy was utilized to simultaneously modify the interlayer environment and transition metal layers of δ-MnO2. The intercalated protons directly form strong O  H bonds with the adjacent oxygens, while the increased H2O molecules also establish a hydrogen bond network (O  H···O) between H2O molecules or bond with adjacent oxygens. Based on the Grotthuss mechanism, these bondings ultimately enhance the stability of layered structures and facilitate the rapid diffusion of protons. Moreover, the introduction of protons induces numerous oxygen vacancies, reduces steric hindrance, and accelerates ion transport kinetics. Consequently, the protons intercalated δ-MnO2 (H-MnO2-x) demonstrates exceptional specific capacity of 401.7 mAh/g at 0.1 A/g and a fast-charging performance over 1000 cycles. Density functional theory analysis confirms the improved electronic conductivity and reduced diffusion energy barrier. Most importantly, electrochemical quartz crystal microbalance tests combining with ex-situ characterizations verify the inhibitory effect of the interlayer proton environment on basic zinc sulfate formation. Protons intercalation behavior provides a promising avenue for the development of MnO2 as well as other cathodes in AZIBs.

2.
BMC Plant Biol ; 24(1): 631, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38965467

RÉSUMÉ

BACKGROUND: DNA methylation contributes to the epigenetic regulation of nuclear gene expression, and is associated with plant growth, development, and stress responses. Compelling evidence has emerged that long non-coding RNA (lncRNA) regulates DNA methylation. Previous genetic and physiological evidence indicates that lncRNA-CRIR1 plays a positive role in the responses of cassava plants to cold stress. However, it is unclear whether global DNA methylation changes with CRIR1-promoted cold tolerance. RESULTS: In this study, a comprehensive comparative analysis of DNA methylation and transcriptome profiles was performed to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression. Compared with the wild-type plants, CRIR1-overexpressing plants present gained DNA methylation in over 37,000 genomic regions and lost DNA methylation in about 16,000 genomic regions, indicating a global decrease in DNA methylation after CRIR1 overexpression. Declining DNA methylation is not correlated with decreased/increased expression of the DNA methylase/demethylase genes, but is associated with increased transcripts of a few transcription factors, chlorophyll metabolism and photosynthesis-related genes, which could contribute to the CRIR1-promoted cold tolerance. CONCLUSIONS: In summary, a first set of transcriptome and epigenome data was integrated in this study to reveal the gene expression and epigenetic dynamics after CRIR1 overexpression, with the identification of several TFs, chlorophyll metabolism and photosynthesis-related genes that may be involved in CRIR1-promoted cold tolerance. Therefore, our study has provided valuable data for the systematic study of molecular insights for plant cold stress response.


Sujet(s)
Méthylation de l'ADN , Épigenèse génétique , Régulation de l'expression des gènes végétaux , Transcriptome , ARN long non codant/génétique , Épigénome , Réponse au choc froid/génétique , Basse température
3.
ACS Omega ; 9(25): 27492-27498, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38947779

RÉSUMÉ

Diamond nanopillar arrays can enhance the fluorescence collection of diamond color centers, playing a crucial role in quantum communication and quantum sensing. In this paper, the preparation of diamond nanopillar arrays was realized by the processes of polystyrene (PS) sphere array film preparation, PS sphere etching shrinkage control, tilted magnetron sputtering of copper film, and oxygen plasma etching. Closely aligned PS sphere array films were prepared on the diamond surface by the gas-liquid interfacial method, and the effects of ethanol and dodecamethylacrylic acid solutions on the formation of the array films were discussed. Controllable reduction of PS sphere diameter is realized by the oxygen plasma etching process, and the changes of the PS sphere array film under the influence of etching power, bias power, and etching time are discussed. Copper antietching films were prepared at the top of arrayed PS spheres by the tilted magnetron sputtering method, and the antietching effect of copper films with different thicknesses was explored. Diamond nanopillar arrays were prepared by oxygen plasma etching, and the effects of etching under different process parameters were discussed. The prepared diamond nanopillars were in hexagonal close-rowed arrays with a spacing of 800 nm and an average diameter of 404 nm, and the spacing, diameter, and height could be parametrically regulated. Raman spectroscopy and photoluminescence spectroscopy detection revealed that the prepared diamond nanopillar array still maintains polycrystalline diamond properties, with only a small amount of the graphite phase appearing. Moreover, the prepared diamond nanopillar array can enhance the photoluminescence of diamond color centers by approximately 2 times. The fabrication method of diamond nanopillar array structures described in this article lays the foundation for quantum sensing technology based on diamond nanostructures.

4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 467-475, 2024 Mar 28.
Article de Anglais, Chinois | MEDLINE | ID: mdl-38970521

RÉSUMÉ

Red blood cells (RBCs) are the primary mediators of oxygen transport in the human body, and their function is mainly achieved through conformational changes of hemoglobin (Hb). Hb is a tetramer composed of four subunits, with HbA being the predominant Hb in healthy adults, existing in two forms: tense state (T state) and relaxed state (R state). Endogenous regulators of Hb conformation include 2,3-diphosphoglyceric acid, carbon dioxide, protons, and chloride ions, while exogenous regulators include inositol hexaphosphate, inositol tripyrophosphate, benzabate, urea derivative L35, and vanillin, each with different mechanisms of action. The application of Hb conformational regulators provides new insights into the study of hypoxia oxygen supply issues and the treatment of sickle cell disease.


Sujet(s)
Hémoglobines , Oxygène , Conformation des protéines , Humains , Oxygène/métabolisme , Hémoglobines/métabolisme , Hémoglobines/composition chimique , Transport biologique , Érythrocytes/métabolisme , Acide phytique/métabolisme , Acide phytique/pharmacologie , 2,3-Diphosphate de glycérate/métabolisme
5.
Clin Exp Med ; 24(1): 138, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38940944

RÉSUMÉ

Both atezolizumab (a PD-L1 inhibitor) plus bevacizumab (A+B) and sintilimab (a PD-1 inhibitor) plus bevacizumab (S+B) are recommended as the first-line regimen for advanced hepatocellular carcinoma (HCC) in China. Different efficacy between the two regimens combined with transvascular intervention for unresectable HCC (uHCC) remain unknown. We retrospectively analyzed uHCC patients treated in three centers by simultaneous combination of A+B or S+B with transarterial chemoembolization (TACE) and FOLFOX-based hepatic arterial infusion chemotherapy (HAIC). Objective response rate (ORR), progression-free survival (PFS), overall survival (OS) and treatment-related adverse events (TRAEs) were compared. Totally 188 patients were included, with 92 and 96 administered A+B+TACE-HAIC (ABTH) and S+B+TACE-HAIC (SBTH), respectively. ORRs (62.0 vs. 70.8%, respectively; P = 0.257) and disease control rates (88.0 vs. 93.8%, P = 0.267) were similar between groups by the mRECIST criteria. ABTH showed no survival advantage over SBTH, with median PFS times of 11.7 months and 13.0 months, respectively (HR = 0.81, 95% CI, 0.52-1.26, P = 0.35) and similar OS times (HR = 1.19, 95% CI, 0.32-4.39, P = 0.8). No significant differences were observed in grade 3-4 TRAEs between groups. Either PD-L1 or PD-1 inhibitor plus bevacizumab combined with TACE-HAIC have similarly excellent therapeutic efficacy with manageable adverse events, representing promising treatment options for uHCC.


Sujet(s)
Protocoles de polychimiothérapie antinéoplasique , Bévacizumab , Carcinome hépatocellulaire , Tumeurs du foie , Humains , Carcinome hépatocellulaire/traitement médicamenteux , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/thérapie , Mâle , Bévacizumab/usage thérapeutique , Bévacizumab/administration et posologie , Adulte d'âge moyen , Femelle , Tumeurs du foie/traitement médicamenteux , Tumeurs du foie/anatomopathologie , Tumeurs du foie/thérapie , Études rétrospectives , Sujet âgé , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Adulte , Anticorps monoclonaux humanisés/usage thérapeutique , Anticorps monoclonaux humanisés/administration et posologie , Résultat thérapeutique , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Chine , Chimioembolisation thérapeutique/méthodes , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Antigène CD274/antagonistes et inhibiteurs , Fluorouracil/usage thérapeutique , Leucovorine/usage thérapeutique
6.
Science ; 384(6701): 1227-1235, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38870286

RÉSUMÉ

We present a design strategy for fabricating ultrastable phase-pure films of formamidinium lead iodide (FAPbI3) by lattice templating using specific two-dimensional (2D) perovskites with FA as the cage cation. When a pure FAPbI3 precursor solution is brought in contact with the 2D perovskite, the black phase forms preferentially at 100°C, much lower than the standard FAPbI3 annealing temperature of 150°C. X-ray diffraction and optical spectroscopy suggest that the resulting FAPbI3 film compresses slightly to acquire the (011) interplanar distances of the 2D perovskite seed. The 2D-templated bulk FAPbI3 films exhibited an efficiency of 24.1% in a p-i-n architecture with 0.5-square centimeter active area and an exceptional durability, retaining 97% of their initial efficiency after 1000 hours under 85°C and maximum power point tracking.

7.
Brain ; 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38875478

RÉSUMÉ

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

8.
Adv Sci (Weinh) ; : e2401187, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38877642

RÉSUMÉ

Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.

9.
J Transl Med ; 22(1): 578, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890658

RÉSUMÉ

BACKGROUND: IDH1-wildtype glioblastoma multiforme (IDHwt-GBM) is a highly heterogeneous and aggressive brain tumour characterised by a dismal prognosis and significant challenges in accurately predicting patient outcomes. To address these issues and personalise treatment approaches, we aimed to develop and validate robust multiomics molecular subtypes of IDHwt-GBM. Through this, we sought to uncover the distinct molecular signatures underlying these subtypes, paving the way for improved diagnosis and targeted therapy for this challenging disease. METHODS: To identify stable molecular subtypes among 184 IDHwt-GBM patients from TCGA, we used the consensus clustering method to consolidate the results from ten advanced multiomics clustering approaches based on mRNA, lncRNA, and mutation data. We developed subtype prediction models using the PAM and machine learning algorithms based on mRNA and MRI data for enhanced clinical utility. These models were validated in five independent datasets, and an online interactive system was created. We conducted a comprehensive assessment of the clinical impact, drug treatment response, and molecular associations of the IDHwt-GBM subtypes. RESULTS: In the TCGA cohort, two molecular subtypes, class 1 and class 2, were identified through multiomics clustering of IDHwt-GBM patients. There was a significant difference in survival between Class 1 and Class 2 patients, with a hazard ratio (HR) of 1.68 [1.15-2.47]. This difference was validated in other datasets (CGGA: HR = 1.75[1.04, 2.94]; CPTAC: HR = 1.79[1.09-2.91]; GALSS: HR = 1.66[1.09-2.54]; UCSF: HR = 1.33[1.00-1.77]; UPENN HR = 1.29[1.04-1.58]). Additionally, class 2 was more sensitive to treatment with radiotherapy combined with temozolomide, and this sensitivity was validated in the GLASS cohort. Correspondingly, class 2 and class 1 exhibited significant differences in mutation patterns, enriched pathways, programmed cell death (PCD), and the tumour immune microenvironment. Class 2 had more mutation signatures associated with defective DNA mismatch repair (P = 0.0021). Enriched pathways of differentially expressed genes in class 1 and class 2 (P-adjust < 0.05) were mainly related to ferroptosis, the PD-1 checkpoint pathway, the JAK-STAT signalling pathway, and other programmed cell death and immune-related pathways. The different cell death modes and immune microenvironments were validated across multiple datasets. Finally, our developed survival prediction model, which integrates molecular subtypes, age, and sex, demonstrated clinical benefits based on the decision curve in the test set. We deployed the molecular subtyping prediction model and survival prediction model online, allowing interactive use and facilitating user convenience. CONCLUSIONS: Molecular subtypes were identified and verified through multiomics clustering in IDHwt-GBM patients. These subtypes are linked to specific mutation patterns, the immune microenvironment, prognoses, and treatment responses.


Sujet(s)
Tumeurs du cerveau , Glioblastome , Isocitrate dehydrogenases , Imagerie par résonance magnétique , ARN messager , Humains , Analyse de regroupements , Glioblastome/génétique , Glioblastome/imagerie diagnostique , Glioblastome/anatomopathologie , Glioblastome/thérapie , Pronostic , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/thérapie , Isocitrate dehydrogenases/génétique , ARN messager/génétique , ARN messager/métabolisme , Mâle , Femelle , Adulte d'âge moyen , Mutation/génétique , Reproductibilité des résultats , Études de cohortes , Résultat thérapeutique , Multi-omique
10.
Chem Soc Rev ; 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38855878

RÉSUMÉ

Seawater electrolysis for the production of fuels and chemicals involved in onshore and offshore plants powered by renewable energies offers a promising avenue and unique advantages for energy and environmental sustainability. Nevertheless, seawater electrolysis presents long-term challenges and issues, such as complex composition, potential side reactions, deposition of and poisoning by microorganisms and metal ions, as well as corrosion, thus hindering the rapid development of seawater electrolysis technology. This review focuses on the production of value-added fuels (hydrogen and beyond) and fine chemicals through seawater electrolysis, as a promising step towards sustainable energy development and carbon neutrality. The principle of seawater electrolysis and related challenges are first introduced, and the redox reaction mechanisms of fuels and chemicals are summarized. Strategies for operating anodes and cathodes including the development and application of chloride- and impurity-resistant electrocatalysts/membranes are reviewed. We comprehensively summarize the production of fuels and chemicals (hydrogen, carbon monoxide, sulfur, ammonia, etc.) at the cathode and anode via seawater electrolysis, and propose other potential strategies for co-producing fine chemicals, even sophisticated and electronic chemicals. Seawater electrolysis can drive the oxidation and upgrading of industrial pollutants or natural organics into value-added chemicals or degrade them into harmless substances, which would be meaningful for environmental protection. Finally, the perspective and prospects are outlined to address the challenges and expand the application of seawater electrolysis.

11.
J Contam Hydrol ; 265: 104381, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38851129

RÉSUMÉ

To study the pollutants immobilization and economy of biologically amended coastal soil, Alternanthera philoxeroides biomass (Bm), biochar (Bc), and dodecyldimethyl betaine (BS) modified Bc (BS-Bc) were used to amend coastal soil from Jialing, Fu, and Qu River. A runoff experiment was used to simulate the longitudinal migration and morphological changes of Pb(II) and chlortetracycline (CTC) in each amended coastal soil, and the economy of pollutants immobilization by different amended coastal soil were compared. The equilibrium time of Pb(II) and CTC in each amended coastal soil ranked in the order of BS-Bc-amended > Bc-amended > Bm-amended > unamended coastal soil. The average Pb(II) and CTC flow rate in different amended coastal soils presented an opposite trend with the equilibrium time. Pb(II) and CTC content all reduced with the increasing runoff length. Under the same soils, the content changes presented Bm and Bc amended > unamended > BS-Bc amended. CEC and clay content of coastal soils were the key factors affecting Pb(II) and CTC immobilization. The immobilization mechanisms were electrostatic attraction, ion exchange, surface precipitation, and complexation to Pb(II) and ion exchange and complexation to CTC. The economy of Pb(II) and CTC immobilization ranged from 0.5 to 9.0 and from 1.0 to 5.4 mg/¥, and coastal soil amended by BS-Bc had practical application value and high economy.

12.
Int J Biol Macromol ; 274(Pt 1): 133278, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38906342

RÉSUMÉ

Removing free hemoglobin generated during extracorporeal circulation remains a challenge. Currently, there is no adsorbent with specificity and good biosafety for removing hemoglobin. In this study, a new chitosan/sodium alginate/carbon nitride (CS/SA/C3N4) hydrogel adsorbent was prepared by blending SA with C3N4 to drop into CS/CaCl2 solution. The physicochemical properties of CS/SA/C3N4 hydrogel were evaluated using some techniques, including scanning electron microscope, Zeta potential measurement, and thermogravimetric analysis. Hemoglobin adsorption in vitro, stability, hemocompatibility, cell compatibility, inflammatory reaction and blood extracorporeal circulation in vivo were also evaluated. The findings revealed that the CS/SA/C3N4-0.4 % hydrogel exhibited an impressive adsorption capacity of 142.35 mg/g for hemoglobin. The kinetic data of hemoglobin adsorption were well-described by pseudo second-order model, while the isothermal model data conformed to the Langmuir model. The hardness and modulus of CS/SA/C3N4-0.4 % was 11.7 KPa and 94.66 KPa respectively, which indicated robust resistance to breakage. CS/SA/C3N4 demonstrated excellent hemocompatibility, biocompatibility and anti-inflammatory properties. In addition, the results of in vivo rabbit extracorporeal blood circulation experiment demonstrated that CS/SA/C3N4 could adsorb free hemoglobin from blood while maintaining high biosafety standard. Consequently, CS/SA/C3N4 hydrogel emerges as a promising candidate for use as a hemoglobin adsorbent in extracorporeal blood circulation system.

13.
Medicine (Baltimore) ; 103(25): e37908, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38905436

RÉSUMÉ

BACKGROUND: Gabapentin supplementation may have some potential in pain control after lumbar laminectomy and discectomy, and this meta-analysis aims to explore the impact of gabapentin supplementation on postoperative pain management for lumbar laminectomy and discectomy. METHODS: PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases were systematically searched, and we included randomized controlled trials assessing the effect of gabapentin supplementation on the pain control of lumbar laminectomy and discectomy. RESULTS: Five randomized controlled trials were finally included in the meta-analysis. Overall, compared with control intervention for lumbar laminectomy and discectomy, gabapentin supplementation was associated with significantly lower pain scores at 2 hours (MD = -2.75; 95% CI = -3.09 to -2.41; P < .00001), pain scores at 4 hours (MD = -2.28; 95% CI = -3.36 to -1.20; P < .0001), pain scores at 24 hours (MD = -0.70; 95% CI = -0.86 to -0.55; P < .00001) and anxiety score compared to control intervention (MD = -1.32; 95% CI = -1.53 to -1.11; P < .00001), but showed no obvious impact on pain scores at 12 hours (MD = -0.58; 95% CI = -1.39 to 0.22; P = .16). In addition, gabapentin supplementation could significantly decrease the incidence of vomiting in relative to control intervention (OR = 0.31; 95% CI = 0.12-0.81; P = .02), but they had similar incidence of nausea (OR = 0.51; 95% CI = 0.15-1.73; P = .28). CONCLUSIONS: Gabapentin supplementation benefits to pain control after lumbar laminectomy and discectomy.


Sujet(s)
Analgésiques , Discectomie , Gabapentine , Laminectomie , Vertèbres lombales , Douleur postopératoire , Gabapentine/usage thérapeutique , Gabapentine/administration et posologie , Humains , Laminectomie/effets indésirables , Laminectomie/méthodes , Douleur postopératoire/prévention et contrôle , Douleur postopératoire/traitement médicamenteux , Douleur postopératoire/étiologie , Discectomie/effets indésirables , Discectomie/méthodes , Analgésiques/usage thérapeutique , Analgésiques/administration et posologie , Vertèbres lombales/chirurgie , Essais contrôlés randomisés comme sujet , Amines/usage thérapeutique , Amines/administration et posologie , Mesure de la douleur , Gestion de la douleur/méthodes
14.
J Obstet Gynaecol Can ; : 102582, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38866202

RÉSUMÉ

This population-based cohort evaluated the association between endometriosis and severe maternal morbidity (SMM), and the mediating effect of infertility and fertility treatment. Included were all singleton deliveries in Ontario between 2006 and 2014. Modified Poisson regression generated adjusted relative risks (aRRs). Mediation analysis estimated direct effect of endometriosis and indirect effect through infertility and mode of conception. 787 449 deliveries were included (19 099, 2.4% with endometriosis). SMM occurred in 29.0 per 1000 deliveries among women with endometriosis, in contrast to 18.2 per 1000 deliveries among those without endometriosis-corresponding to an adjusted RR of SMM of 1.43 (95% CI 1.31-1.56). Mediation analysis demonstrated that the effect of endometriosis on SMM was independent of infertility or fertility treatment. We conclude that SMM in women with endometriosis appears to be due to the disease itself and not to infertility or related treatments.

15.
Langmuir ; 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38920353

RÉSUMÉ

The accurate measurement of pH in highly alkaline environments is critical for various industrial applications but remains a complex task. This paper discusses the development of novel Fe-doped SrCoOx-based FET sensors for the detection of extreme alkaline pH levels. Through a comprehensive investigation of the effects of Fe doping on the structure, electrical properties, and sensing performance of SrCoOx, we have identified the optimal doping level that significantly enhances the sensor's performance in highly alkaline conditions. With a Fe doping level of 5 mol %, the sensitivity of the sensor improves to 0.86 lg(Ω)/pH while maintaining the response rate. Further increasing the Fe doping to 10 mol % results in a sensor that demonstrates favorable response time, a suitable pH range, and a linear correlation between lg(R) and pH. The combination of X-ray photoelectron spectroscopy and X-ray diffraction analysis provides insight into the regulation mechanisms of Fe doping on the crystal structure, electronic structure, and oxygen vacancy concentration of SrCoOx. Our findings indicate that Fe doping leads to an increase in oxygen vacancy concentration and a decrease in the energy barrier for oxygen ion migration, which contributes to the improved sensing performance of the Fe-doped SrCoOx sensors. Additionally, the study highlights the influence of oxygen vacancy concentration on the electrical properties of SrCoOx. Precise control over the concentration of oxygen vacancies is crucial for optimizing the sensitivity and response speed of SrCoOx FET sensors under extreme alkalinity conditions.

16.
Small ; : e2404099, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38940444

RÉSUMÉ

The chemically pre-intercalated lattice engineering is widely applied to elevate the electronic conductivity, expand the interlayer spacing, and improve the structural stability of layered oxide cathodes. However, the mainstream unitary metal ion pre-intercalation generally produces the cation/vacancy ordered superstructure, which astricts the further improvement of lattice respiration and charge-carrier ion storage and diffusion. Herein, a multiple metal ions pre-intercalation lattice engineering is proposed to break the cation/vacancy ordered superstructure. Taking the bilayer V2O5 as an example, Ni, Co, and Zn ternary ions are simultaneously pre-intercalated into its interlayer space (NiCoZnVO). It is revealed that the Ni─Co neighboring characteristic caused by Ni(3d)-O(2p)-Co(3d) orbital coupling and the Co-Zn/Ni-Zn repulsion effect due to chemical bond incompatibility, endow the NiCoZnVO sample with the cation/vacancy disordered structure. This not only reduces the Li+ diffusion barrier, but also increases the diffusion dimension of Li+ (from one-dimension to two-dimension). Particularly, Ni, Co, and Zn ions co-pre-intercalation causes a prestress, which realizes a quasi-zero-strain structure at high-voltage window upon charging/discharging process. The functions of Ni ion stabilizing the lattice structure and Co or Zn ions activating more Li+ reversible storage reaction of V5+/V4+ are further revealed. The cation/vacancy disordered structure significantly enhances Li+ storage properties of NiCoZnVO cathode.

17.
Front Pharmacol ; 15: 1330732, 2024.
Article de Anglais | MEDLINE | ID: mdl-38933667

RÉSUMÉ

Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.

18.
Curr Drug Deliv ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38939986

RÉSUMÉ

Drug transporters are critical factors influencing the pharmacokinetics of drugs under hypoxic conditions. Studies have shown significant changes in drug transporter levels in the hypoxic environment. In addition to being regulated by HIF-1, nuclear receptors, and inflammatory factors, hypoxia can also regulate transporters through epigenetic modifications, thereby affecting drug absorption, distribution, metabolism, and excretion. In recent years, increasing attention has been paid to the role of epigenetic modifications in regulating drug transporters under hypoxic conditions at high altitude. In this paper, we comprehensively review the effects of hypoxia on drug transporters and epigenetic modifications and explore the regulatory mechanism of epigenetic modifications on drug transporter expression under hypoxic conditions. The aim is to provide a reference for exploring the epigenetic regulation mechanism of drug transporter expression in the hypoxic environment at high altitude, and then guide the study of pharmacokinetics and promote effective and safe medication at high altitude.

19.
Chem Sci ; 15(25): 9733-9741, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38939145

RÉSUMÉ

Highly efficient degradation of antibiotics is a huge challenge due to the extremely stable molecules and the potential for biological resistance. However, conventional degradation methods are limited to lower degradation rate, higher energy consumption and secondary pollution. Herein, we report a new Cu-based metal-organic framework (MOF), featuring classical planar trinuclear [Cu3(µ3-O)]4+ clusters within the pores. The presence of the rich open metal sites and the large pore ratio, as well as the high catalytic activity of Cu2+ ions, are conducive to boosting the degradation of various antibiotics (>95%) under the activation of peroxymonosulfate. Remarkably, this is the first MOF to achieve such exceptional catalytic performance under neutral and even alkaline conditions, which exceeds those of most reported materials. Mechanism investigation demonstrates that multiple active species were produced and promoted the degradation synergistically during the advanced oxidation processes.

20.
ACS Nano ; 18(22): 14595-14604, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38758185

RÉSUMÉ

Defect engineering and nitrogen doping being effective strategies for modulating the surface chemical state of the carbon matrix have been widely explored to promote the catalytic activity in the territory of electrochemical energy storage and conversion devices. However, the controllable synthesis of carbon material with high-density specific defects and high nitrogen doping is still full of challenges. Here, we first synthesize one-dimensional necklace-like nitrogen-doped carbon nanochains (N-CNCs) with abundant defects on carbon fiber paper (CFP) by chemical vapor deposition (CVD) method. The resultant nanostructures are a bunch of interconnected carbon spheres with a hollow structure at the internode and present the complete one-dimensional nanochain configuration. Specifically, the N-CNCs with a corrugated surface possesses high content of sp3 defects (31.2%) and nitrogen (23.6 at %). Combining finite element analysis and experimental results, it reveals that the robust shear field generated by etching gas releasing from thermal decomposition of melamine in situ modulates the CVD process via changing the size and force environment of the metal catalyst droplets for formation of N-CNCs. Benefiting from the high ratio of sp3/sp2 and nitrogen doped on the surface, the N-CNCs@CFP displays a superior electrocatalytic performance for CO2RR, delivering CO Faradaic efficiency of 95.9% and a current density of 23.2 mA cm-2 at -0.86 V vs RHE. This work provides promising synthesis strategy and some inspirations for construction of ultradense and specific defects coupling with nitrogen doping sites into carbon materials to achieve high-efficiency electrocatalysis applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...