Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Gamme d'année
1.
Genet Mol Biol ; 39(1): 151-61, 2016 Mar.
Article de Anglais | MEDLINE | ID: mdl-27007909

RÉSUMÉ

As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

2.
Electron. j. biotechnol ; Electron. j. biotechnol;17(5): 224-229, Sept. 2014. ilus, tab
Article de Anglais | LILACS | ID: lil-724788

RÉSUMÉ

Background Follistatin (FST), a secreted glycoprotein, is intrinsically linked to muscle hypertrophy. To explore the function of duck FST in myoblast proliferation and differentiation, the pEGFP-FST eukaryotic expression vector was constructed and identified. The biological activities of this vector were analyzed by transfecting pEGFP-FST into cultured duck myoblasts using Lipofectamine™ 2000 and subsequently determining the mRNA expression profiles of FST and myostatin (MSTN). Results The duck pEGFP-FST vector was successfully constructed and was confirmed to have high liposome-mediated transfection efficiency in duck myoblasts. Additionally, myoblasts transfected with pEGFP-FST had a higher biological activity. Significantly, the overexpression of FST in these cells significantly inhibited the mRNA expression of MSTN (a target gene that is negatively regulated by FST). Conclusions The duck pEGFP-FST vector has been constructed successfully and exhibits biological activity by promoting myoblast proliferation and differentiation in vitro.


Sujet(s)
Animaux , Transfection , Myoblastes/métabolisme , Follistatine/métabolisme , Hypertrophie , Maladies musculaires/anatomopathologie , Dosage biologique , Techniques in vitro , ARN messager , Différenciation cellulaire , Prolifération cellulaire , Canards , Cellules eucaryotes/métabolisme , Réaction de polymérisation en chaine en temps réel
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE