Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 132
Filtrer
1.
Chin Med ; 19(1): 138, 2024 Oct 08.
Article de Anglais | MEDLINE | ID: mdl-39380014

RÉSUMÉ

BACKGROUND: Fritillariae Cirrhosae Bulbus (FCB) is frequently adulterated with its closely related species due to personal or non-man made factors, leading to alterations in the composition of its constituents and compromising the efficacy of its products. METHODS: The specific single nucleotide polymorphisms (SNPs) were screened by comparing candidate barcodes of Fritillaria and verified by amplification and sequencing. Herb molecular quantification (Herb-Q) was established by detecting specific SNPs, and the methodological validation was performed. Quantitative standard curves were established for FCB mixed with each adulterated species, and the quantitative validity of this method was verified based on external standard substance. In addition, eight commercial Shedan Chuanbei capsules (SDCBs) randomly selected were detected. RESULTS: FCB and its five adulterants can be distinguished based on the ITS 341 site. The methodological investigation of Herb-Q shows optimal accuracy, and repeatability, which exhibited good linearity with an R2 of 0.9997 (> 0.99). An average bias in quantitative validity was 5.973% between the measured and actual values. Four of eight commercial SDCBs were adulterated with F. ussuriensis or F. thunbergia with adulteration levels ranging from 9 to 15% of the total weight. CONCLUSION: This study confirmed that Herb-Q can quantitatively detect both the mixed herbs and Chinese patent medicines (CPMs) containing FCB with high reproducibility and accuracy. This method provides technical support for market regulation and helps safeguard patient rights.

2.
Heliyon ; 10(19): e38291, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-39386829

RÉSUMÉ

Soil erosion is one of the most serious ecological and environmental problems facing southern China. The Changhua River Basin on Hainan Island is affected by soil erosion, which is causing the soil environment to become more fragile. Compared with the Revised Soil Erosion Equation (RUSLE), the Chinese Soil Loss Equation (CSLE) is based on a large amount of Chinese local data and research results, which more accurately reflect the actual situation of soil erosion in China and therefore have better accuracy and applicability in the Chinese region. By combining GIS and RS technologies, this study establishes the CSLE model of the Changhua River Basin, quantifies the soil erosion data via image elements from 2020 to 2022 using the spatial interpolation method, classifies the erosion intensity, and analyzes the spatial and temporal change characteristics of soil erosion. The statistical results show that, during the period from 2020 to 2022, the area of slight erosion in the Changhua River Basin increased by 553.25 km2, with a rate of change of 15.83 %, and the areas of mild erosion, moderate erosion, intense erosion, very intense erosion, and severe erosion decreased by 446.42 km2, 64.4 km2, 25.73 km2, 11.25 km2, and 5.45 km2, respectively, with rates of change of -31.05 %, -30.08 %, -36.58 %, -18.02 %, and -13.85 %, respectively. Slight erosion is defined as soil erosion less than the permissible soil loss and is not regarded as soil erosion, and the other erosion intensities showed a yearly decreasing trend, indicating that the soil erosion control was effective during this three-year period. In the work of soil and water conservation, it is especially necessary to determine the main factors influencing soil erosion and predict the areas that may be prone to such erosion. Therefore, on the basis of establishing a characteristic model using land use type, slope and soil type, and through superposition analysis, we obtained the spatial and temporal change characteristics of soil erosion. The research results are as follows: (1) slight erosion is mainly concentrated in forested areas, and forested land has a better capacity for soil and water conservation; (2) mild, moderate, and strong erosion mainly occur in cultivated areas and areas with a slope of 0-5°; (3) areas of built land and areas with a slope of 8°-15° are more prone to intense erosion, although they cover a smaller area; (4) when the slope is greater than 15°, the overlap range with the forest area is larger and the slope is no longer the main factor leading to soil erosion. Thus, it can be seen that forest land significantly reduces the impact of soil erosion. (5) among the different soil types, Technosol, Ferralsol and Fluvisol all have less than 55 per cent uneroded area and are generally less erosion-resistant, while Lixisol and Acrisol are relatively more susceptible to a high degree of erosion hazard (Extremely strong erosion, severe erosion).

3.
Sci Rep ; 14(1): 21291, 2024 09 12.
Article de Anglais | MEDLINE | ID: mdl-39266574

RÉSUMÉ

Fritillaria cirrhosa, an endangered medicinal plant in the Qinghai-Tibet Plateau, is facing resource scarcity. Artificial cultivation has been employed to address this issue, but problems related to continuous cultivation hinder successful transplantation. Imbalanced microbial communities are considered a potential cause, yet the overall changes in the microbial community under continuous cropping systems remain poorly understood. Here, we investigated the effects of varying durations of continuous cropping on the bacterial and fungal communities, as well as enzymatic activities, in the rhizospheric soil of F. cirrhosa. Our findings revealed that continuous cropping of F. cirrhosa resulted in soil acidification, nutrient imbalances, and increased enzyme activity. Specifically, after 10 years of continuous cropping, there was a notable shift in the abundance and diversity (e.g., Chao1 index) of soil bacteria and fungi. Moreover, microbial composition analyses revealed a significant accumulation of harmful microorganisms associated with soil-borne diseases (e.g., Luteimonas, Parastagonospora, Pseudogymnoascus) in successively cropped soils, in contrast to the significant reduction of beneficial microorganisms (e.g., Sphingomonas, Lysobacter, Cladosporium) that promote plant growth and development and protect against diseases such as Fusarium sp.These changes led to decreased connectivity and stability within the soil microbial community. Structural equation modeling and redundancy analysis revealed that alkaline hydrolytic nitrogen and available phosphorus directly influenced soil pH, which was identified as the primary driver of soil microbial community changes and subsequently contributed to soil health deterioration. Overall, our results highlight that soil acidification and imbalanced rhizosphere microbial communities are the primary challenges associated with continuous cropping of F. cirrhosa. These findings establish a theoretical foundation for standardized cultivation practices of F. cirrhosa and the bioremediation of continuously cultivated soils.


Sujet(s)
Bactéries , Fritillaria , Champignons , Microbiologie du sol , Fritillaria/croissance et développement , Fritillaria/microbiologie , Tibet , Bactéries/classification , Bactéries/croissance et développement , Sol/composition chimique , Rhizosphère , Microbiote , Mycobiome
4.
Molecules ; 29(17)2024 Aug 25.
Article de Anglais | MEDLINE | ID: mdl-39274864

RÉSUMÉ

The root of Salvia miltiorrhiza Bunge (SMB) has been widely used to treat cardiovascular diseases. However, the contents of secondary metabolites in the roots from different production areas are significantly different, and the impact of soil factors on this accumulation remains unclear. Therefore, this study aimed to elucidate the regularity of variation between the active components and soil factors through targeted metabolomics and chemical dosimetry. Soils were collected from five different cities (A, B, C, D, and E) and transplanted into the study area. The results showed that there were significant differences in the soil fertility characteristics and heavy metal pollution levels in different soils. Ten water- and twelve lipid-soluble metabolites were identified in SMBs grown in all soil types. SMBs from D cities exhibited the highest total tanshinone content (p < 0.05). The salvianolic acid B content in SMBs from E cities was the highest (p < 0.05). Interestingly, correlation analysis revealed a significant negative correlation between the accumulation of lipid-soluble and water-soluble metabolites. Double-matrix correlation analysis demonstrated that available potassium (AK) was significantly negatively correlated with salvianolic acid B (r = -0.80, p = 0.0004) and positively correlated with tanshinone IIA (r = 0.66, p = 0.008). Conversely, cadmium (Cd) and cuprum (Cu) were significantly positively and negatively correlated with salvianolic acid B (r = 0.96, p < 0.0001 and r = 0.72, p = 0.0024) and tanshinone IIA (r = 0.40, p = 0.14 and r = 0.73, p = 0.0018), respectively. Mantel's test indicated that AK (r > 0.52, p < 0.001), Cu (r > 0.60, p < 0.005), and Cd (r > 0.31, p < 0.05) were the primary drivers of the differences in the active components of SMBs. These findings provide a theoretical framework for modulating targeted metabolites of SMB through soil factors, with significant implications for the cultivation and quality control of medicinal plants.


Sujet(s)
Métabolomique , Salvia miltiorrhiza , Sol , Salvia miltiorrhiza/composition chimique , Salvia miltiorrhiza/métabolisme , Métabolomique/méthodes , Sol/composition chimique , Chromatographie en phase liquide à haute performance/méthodes , Racines de plante/métabolisme , Racines de plante/composition chimique , Abiétanes , Benzofuranes/analyse , Benzofuranes/métabolisme , Depsides
5.
J Control Release ; 373: 823-836, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39094633

RÉSUMÉ

Precisely co-delivering antigens and immunosuppressants via nano/microcarriers to antigen-presenting cells (APCs) to induce antigen-specific immune tolerance represents a highly promising strategy for treating or preventing autoimmune diseases. The physicochemical properties of nano/microcarriers play a pivotal role in regulating immune function, with particle size and surface charge emerging as crucial parameters. In particular, very few studies have investigated micron-scale carriers of antigens. Herein, various nanoparticles and microparticles (NPs/MPs) with diverse particle sizes (ranging from 200 nm to 5 µm) and surface charges were prepared. Antigen peptides (MOG35-55) and immunosuppressants were encapsulated in these particles to induce antigen-specific immune tolerance. Two emulsifiers, PVA and PEMA, were employed to confer different surface charges to the NPs/MPs. The in vitro and in vivo studies demonstrated that NP/MP-PEMA could induce immune tolerance earlier than NP/MP-PVA and that NP/MP-PVA could induce immune tolerance more slowly and sustainably, indicating that highly negatively charged particles can induce immune tolerance more rapidly. Among the different sizes and charged particles tested, 200-nm-NP-PVA and 3-µm-MP-PEMA induced the greatest immune tolerance. In addition, the combination of NPs with MPs can further improve the induction of immune tolerance. In particular, combining 200 nm-NP-PVA with 3 µm-MP-PEMA or combining 500 nm-NP-PEMA with 3 µm-MP-PVA had optimal therapeutic efficacy. This study offers a new perspective for treating diseases by combining NPs with MPs and applying different emulsifiers to prepare NPs and MPs.


Sujet(s)
Tolérance immunitaire , Souris de lignée C57BL , Nanoparticules , Taille de particule , Animaux , Tolérance immunitaire/effets des médicaments et des substances chimiques , Nanoparticules/composition chimique , Nanoparticules/administration et posologie , Immunosuppresseurs/administration et posologie , Immunosuppresseurs/composition chimique , Immunosuppresseurs/pharmacologie , Antigènes/administration et posologie , Antigènes/immunologie , Femelle , Souris , Vecteurs de médicaments/composition chimique , Poly(alcool vinylique)/composition chimique , Cellules présentatrices d'antigène/immunologie , Fragments peptidiques/immunologie , Fragments peptidiques/administration et posologie , Fragments peptidiques/composition chimique
6.
Chin J Nat Med ; 22(7): 663-672, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39059835

RÉSUMÉ

Variations in herb dosage due to species adulteration and dosing inaccuracies can substantially affect clinical safety and efficacy. Accurate species quantification remains challenging, as current methods often yield inconsistent results. This study introduces a novel pyrosequencing-based technique, termed herb molecular quantification (Herb-Q), designed to precisely quantify herbal products. We evaluated its effectiveness using Pinellia ternata and five of its adulterants. Initially, we assessed commonly used DNA barcodes with sequences from a public database, identifying two candidate regions, Maturase K (matK) and internal transcribed spacer 2 (ITS2), for screening specific single nucleotide polymorphism (SNP) loci, allowing for species-specific identification. These loci were validated by amplifying and sequencing genomic material from collected samples. Our validation studies showed that Herb-Q demonstrated excellent linearity, accuracy, repeatability, and detection limits. We established quantitative standard curves with high R2 values (> 0.99) to enable precise species quantification, which were combined with external standards to provide clear and accurate visual quantification results. The average bias in quantifying the tuber of P. ternata was 2.38%, confirming that Herb-Q can accurately identify and quantify herbal product constituents. Moreover, the entire quantification process took less than 4 h. This study presents a novel, rapid method for accurately quantifying species in herbal products and advances the application of DNA barcoding from species identification to quantitative detection.


Sujet(s)
Codage à barres de l'ADN pour la taxonomie , Pinellia , Pinellia/génétique , Pinellia/composition chimique , Codage à barres de l'ADN pour la taxonomie/méthodes , Polymorphisme de nucléotide simple , ADN des plantes/génétique , Analyse de séquence d'ADN/méthodes , Médicaments issus de plantes chinoises/composition chimique , Contamination de médicament , Plantes médicinales/génétique , Plantes médicinales/composition chimique , Plantes médicinales/classification
7.
J Hazard Mater ; 472: 134611, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38754230

RÉSUMÉ

Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.


Sujet(s)
Cadmium , Fritillaria , Fritillaria/génétique , Fritillaria/métabolisme , Cadmium/toxicité , Tibet , Stress oxydatif/effets des médicaments et des substances chimiques , Photosynthèse/effets des médicaments et des substances chimiques , Paroi cellulaire/effets des médicaments et des substances chimiques , Paroi cellulaire/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/métabolisme , Glutathion/métabolisme , Espèces réactives de l'oxygène/métabolisme , Multi-omique
8.
J Agric Food Chem ; 72(14): 8269-8283, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38557049

RÉSUMÉ

Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.


Sujet(s)
Hétérosides , Urticaceae , Hétérosides/composition chimique , Glycosyltransferase/génétique , Glycosyltransferase/métabolisme , Flavonoïdes , Flavonols , Plantes/métabolisme , Uridine diphosphate , Analyse de profil d'expression de gènes , Urticaceae/métabolisme , Sucres
9.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38647720

RÉSUMÉ

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Sujet(s)
Régulation de l'expression des gènes végétaux , Métabolomique , Pinellia , Facteur de croissance végétal , Feuilles de plante , Transcriptome , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/croissance et développement , Pinellia/génétique , Pinellia/métabolisme , Pinellia/physiologie , Pinellia/croissance et développement , Facteur de croissance végétal/métabolisme , Transcriptome/génétique , Sénescence des plantes/génétique , Analyse de profil d'expression de gènes , Sucres/métabolisme , Métabolome/génétique , Réseaux de régulation génique , Métabolisme glucidique/génétique
10.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37837531

RÉSUMÉ

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Sujet(s)
Plantes médicinales , Plantes médicinales/génétique , Amélioration des plantes , Génomique/méthodes , Séquençage du génome entier , Produits agricoles/génétique , Génome végétal/génétique
11.
Front Immunol ; 14: 1326667, 2023.
Article de Anglais | MEDLINE | ID: mdl-38155975

RÉSUMÉ

Lung cancer is a chronic wasting disease with insidious onset and long treatment cycle. Exosomes are specialized extracellular vesicles, at first exosomes were considered as a transporter of cellular metabolic wastes, but recently many studies have identified exosomes which contain a variety of biologically active substances that play a role in the regulation of cellular communication and physiological functions. Exosomes play an important role in the development of lung cancer and can promote metastasis through a variety of mechanisms. However, at the same time, researchers have also discovered that immune cells can also inhibit lung cancer through exosomes. In addition, researchers have discovered that some specific miRNAs in exosomes can be used as markers for early diagnosis of lung cancer. Engineering exosomes may be one of the strategies to enhance the clinical translational application of exosomes in the future, for example, strategies such as modifying exosomes to enhance targeting or utilizing exosomes as carriers for drug delivery have been explored. but more studies are needed to verify the safety and efficacy. This article reviews the latest research on exosomes in the field of lung cancer, from the mechanism of lung cancer development, the functions of immune cell-derived exosomes and tumor-derived exosomes, to the early diagnosis of lung cancer.


Sujet(s)
Exosomes , Vésicules extracellulaires , Tumeurs du poumon , microARN , Humains , Tumeurs du poumon/anatomopathologie , Exosomes/métabolisme , Vésicules extracellulaires/métabolisme , microARN/métabolisme , Communication cellulaire
12.
Molecules ; 28(15)2023 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-37570877

RÉSUMÉ

Aralia elata, a renowned medicinal plant with a rich history in traditional medicine, has gained attention for its potential therapeutic applications. However, the leaves of this plant have been largely overlooked and discarded due to limited knowledge of their biological activity and chemical composition. To bridge this gap, a comprehensive study was conducted to explore the therapeutic potential of the 70% ethanol extract derived from Aralia elata leaves (LAE) for the treatment of cardiovascular disease (CVD). Initially, the cytotoxic effects of LAE on human umbilical vein endothelial cells (HUVECs) were assessed, revealing no toxicity within concentrations up to 5 µg/mL. This suggests that LAE could serve as a safe raw material for the development of health supplements and drugs aimed at promoting cardiovascular well-being. Furthermore, the study found that LAE extract demonstrated anti-inflammatory properties in HUVECs by modulating the PI3K/Akt and MAPK signaling pathways. These findings are particularly significant as inflammation plays a crucial role in the progression of CVD. Moreover, LAE extract exhibited the ability to suppress the expression of adhesion molecules VCAM-1 and ICAM-1, which are pivotal in leukocyte migration to inflamed blood vessels observed in various pathological conditions. In conjunction with the investigation on therapeutic potential, the study also established an optimal HPLC-PDA-ESI-MS/MS method to identify and confirm the chemical constituents present in 24 samples collected from distinct regions in South Korea. Tentative identification revealed the presence of 14 saponins and nine phenolic compounds, while further analysis using PCA and PLS-DA allowed for the differentiation of samples based on their geographical origins. Notably, specific compounds such as chlorogenic acid, isochlorogenic acid A, and quercitrin emerged as marker compounds responsible for distinguishing samples from different regions. Overall, by unraveling its endothelial protective activity and identifying key chemical constituents, this research not only offers valuable insights for the development of novel treatments but also underscores the importance of utilizing and preserving natural resources efficiently.


Sujet(s)
Aralia , Spectrométrie de masse en tandem , Humains , Aralia/composition chimique , Phosphatidylinositol 3-kinases , Extraits de plantes/pharmacologie , Extraits de plantes/analyse , Éthanol/composition chimique , Cellules endothéliales de la veine ombilicale humaine , Feuilles de plante/composition chimique
13.
Sci Rep ; 13(1): 14268, 2023 08 31.
Article de Anglais | MEDLINE | ID: mdl-37652950

RÉSUMÉ

Salvia is widely used as medicine, food, and ornamental plants all over the world, with three main distribution centers, the Central and western Asia/Mediterranean (CAM), the East Aisa (EA), and the Central and South America (CASA). Along with its large number of species and world-wide distribution, Salvia is paraphyletic with multiple diversity. Chloroplast genomes (CPs) are useful tools for analyzing the phylogeny of plants at lower taxonomic levels. In this study, we reported chloroplast genomes of five species of Salvia and performed phylogenetic analysis with current available CPs of Salvia. Repeated sequence analysis and comparative analysis of Salvia CPs were also performed with representative species from different distribution centers. The results showed that the genetic characters of the CPs are related to the geographic distribution of plants. Species from CAM diverged first to form a separate group, followed by species from EA, and finally species from CASA. Larger variations of CPs were observed in species from CAM, whereas more deficient sequences and less repeated sequences in the CPs were observed in species from CASA. These results provide valuable information on the development and utilization of the worldwide genetic resources of Salvia.


Sujet(s)
Génome de chloroplaste , Salvia , Asie de l'Ouest , Amérique centrale , Phylogenèse , Salvia/génétique
14.
J Pharm Anal ; 13(5): 431-441, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37305789

RÉSUMÉ

DNA barcoding has been widely used for herb identification in recent decades, enabling safety and innovation in the field of herbal medicine. In this article, we summarize recent progress in DNA barcoding for herbal medicine to provide ideas for the further development and application of this technology. Most importantly, the standard DNA barcode has been extended in two ways. First, while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples, super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels. Second, mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials. In addition, some molecular techniques, such as high-throughput sequencing and isothermal amplification, are combined with DNA barcodes for species identification, which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era. Furthermore, standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference sequences for species identification, which increases the accuracy and credibility of species discrimination based on DNA barcodes. In summary, DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.

15.
Sci Rep ; 13(1): 10421, 2023 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-37369745

RÉSUMÉ

The influence and mechanism of porous structure on the deformation failure of cement sheaths under hydraulic pressure is still unclear. To solve this problem, a net slurry cement sheath and a liquid silicon cement sheath were prepared by using a cement material and a liquid silicon suspension. The distributions of the pore radius and spatial location were analyzed using computed tomography scanning and statistics to obtain their probability density distribution functions. Based on the distribution functions, the single-layer and double-layer porous reconstruction models of the net slurry cement sheath and liquid silicon cement sheath were constructed using a FLAC 3D program. A series of numerical simulations were conducted to study the deformation failure of the cement sheaths under in situ stress and hydraulic pressure. The effects of the porous and double-layer structures on the breakdown pressure, plastic failure zone, radial deformation, and stress distribution of the cement sheaths were analyzed. As a result, the mechanisms for the influence of the porous and double-layer structures on the failure mode, failure path, and interaction between the cement sheath and metal casing were revealed. The results of this research provide a theoretical basis for an in-depth understanding of the failure mechanisms of porous cement sheaths.

16.
Chin J Nat Med ; 21(4): 243-252, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-37120243

RÉSUMÉ

Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.


Sujet(s)
Pinellia , Plantes médicinales , Pinellia/génétique , Réaction de choc thermique/génétique , Photosynthèse/génétique , Plantes médicinales/génétique , Phénotype
17.
Analyst ; 148(10): 2352-2361, 2023 May 16.
Article de Anglais | MEDLINE | ID: mdl-37098798

RÉSUMÉ

Phospholipase C (PLC) has important biological functions in specific cancer types, immune disorders and neurodegeneration. Here, an ultrasensitive electrochemical sensor for PLC was developed via signal amplification based on breathing atom transfer radical polymerization (ATRP). First, phosphatidylethanolamine (PE) was immobilized on the surface of a gold electrode by L-cysteine and cross-linker. Then, PE was specially hydrolyzed by PLC to obtain the phosphate groups and tethered with the ATRP initiator α-bromophenacetic acid (BPAA) by the coordination action of Zr4+. After the breathing ATRP, a large number of electroactive monomers (ferrocenylmethyl methacrylate, FcMMA) were successfully grafted from BPAA. The experimental results indicated that the detection signal of the obtained electrode (sensor) was proportional to the concentration of PLC. The sensor showed a low detection limit of 0.270 U L-1 and a wide linear range of 1-40 U L-1 (R2 = 0.997). Most importantly, the sensor was successfully applied to detect PLC in breast cancer cells (MCF-7, MDA-MB-231) and nontumor cells (MCF-10A). The value obtained by our electrochemical sensor had no obvious difference from that determined by the commercial ELISA kit. These results showed that the fabricated PLC sensor had acceptable potential in clinical applications.


Sujet(s)
Techniques de biocapteur , ADN , ADN/analyse , Polymérisation , Techniques de biocapteur/méthodes , Limite de détection , Électrodes , Techniques électrochimiques/méthodes
18.
Risk Manag Healthc Policy ; 16: 347-356, 2023.
Article de Anglais | MEDLINE | ID: mdl-36923494

RÉSUMÉ

Purpose: Quality control circle (QCC) has acquired success in many fields in healthcare industry as a process management tool, whereas its efficacy in surgical antimicrobial prophylaxis (SAP) remains unknown. This study aimed to implement QCC interventions to improve the appropriateness of SAP. Methods: A QCC activity team was established to grasp the current situation of SAP in clean surgery procedure, set target, formulate corresponding countermeasures and implement and review them in stages. The plan-do-check-act (PDCA) method was cyclically applied. Results: The appropriateness of antibiotic prophylaxis before (January to December 2020) and after (January to December 2021) the implementation of QCC activities were evaluated based on relevant international and Chinese SAP guidelines. The overall SAP appropriateness was significantly improved from 68.72% before QCC to 93.7% post QCC implementation (P<0.01). A significant improvement (P<0.05) was also determined for each category: selection (from 78.82% to 96.06%), duration (from 90.15% to 96.46%), indication (from 94.09% to 97.64%), timing of first dose (from 96.55% to 99.21%), antimicrobial usage (from 96.8% to 99.41%), re-dosing of antimicrobial (from 96.55% to 99.21%). Conclusion: Implementation of a QCC program can optimize the use of antibiotics and improve the appropriateness of SAP and is of practical importance to their standardization.

20.
Food Chem ; 415: 135760, 2023 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-36854243

RÉSUMÉ

The effects of light calcium carbonate (CaCO3) on pullulan biosynthesis by Aureobasidium pullulans NCPS2016 were investigated. Light CaCO3 enhanced pullulan production by 12.4 % when added to the low concentration of fructose broth compared with K2HPO4. Pullulan production was further improved when increasing both the concentrations of light CaCO3 and fructose. Compared to K2HPO4, light CaCO3 improved the activities of UDP-glucose pyrophosphorylase, α-phosphoglucose mutase, UDP-glucosyltransferase, and glucosyltransferase relevant to pullulan biosynthesis, and the gene transcriptional levels of UDP-glucose pyrophosphorylase, α-phosphoglucose mutase, UDP-glucosyltransferase, and glucose kinase were enhanced. During 30-liter fermentation, 144.3 g/L of purified pullulan was produced from 200 g/L of fructose and 15 g/L of light CaCO3 within 168 h, with the yield and productivity of 0.72 g/g and 0.86 g/L/h respectively. This is the first report that light CaCO3 improves pullulan production significantly.


Sujet(s)
Ascomycota , Intramolecular transferases , Sucres , Carbonate de calcium , Fermentation , Fructose , Glucose/pharmacologie , Glucosyltransferases , Intramolecular transferases/pharmacologie , Uridine diphosphate/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE