Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.298
Filtrer
1.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article de Chinois | MEDLINE | ID: mdl-38966978

RÉSUMÉ

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Sujet(s)
Cycle citrique , Humains , Cellules HeLa , Acide succinique/métabolisme , Acide succinique/composition chimique , Fumarates/métabolisme , Fumarates/composition chimique
2.
Arch Microbiol ; 206(8): 342, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38967823

RÉSUMÉ

A novel mangrove soil-derived actinomycete, strain S2-29T, was found to be most closely related to Saccharopolyspora karakumensis 5K548T based on 16 S rRNA sequence (99.24% similarity) and genomic phylogenetic analyses. However, significant divergence in digital DNA-DNA hybridization, average nucleotide identity, and unique biosynthetic gene cluster possession distinguished S2-29T as a distinct Saccharopolyspora species. Pan genome evaluation revealed exceptional genomic flexibility in genus Saccharopolyspora, with > 95% accessory genome content. Strain S2-29T harbored 718 unique genes, largely implicated in energetic metabolisms, indicating different metabolic capacities from its close relatives. Several uncharacterized biosynthetic gene clusters in strain S2-29T highlighted the strain's untapped capacity to produce novel functional compounds with potential biotechnological applications. Designation as novel species Saccharopolyspora mangrovi sp. nov. (type strain S2-29T = JCM 34,548T = CGMCC 4.7716T) was warranted, expanding the known Saccharopolyspora diversity and ecology. The discovery of this mangrove-adapted strain advances understanding of the genus while highlighting an untapped source of chemical diversity.


Sujet(s)
ADN bactérien , Génome bactérien , Phylogenèse , ARN ribosomique 16S , Saccharopolyspora , Microbiologie du sol , Saccharopolyspora/génétique , Saccharopolyspora/métabolisme , Saccharopolyspora/classification , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Famille multigénique , Génomique , Analyse de séquence d'ADN , Zones humides , Hybridation d'acides nucléiques , Techniques de typage bactérien
3.
Int Immunopharmacol ; 136: 112305, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38823178

RÉSUMÉ

The second-leading cause of death, cancer, poses a significant threat to human life. Innovations in cancer therapies are crucial due to limitations in traditional approaches. Newcastle disease virus (NDV), a nonpathogenic oncolytic virus, exhibits multifunctional anticancer properties by selectively infecting, replicating, and eliminating tumor cells. To enhance NDV's antitumor activity, four oncolytic NDV viruses were developed, incorporating IL24 and/or GM-CSF genes at different gene loci using reverse genetics. In vitro experiments revealed that oncolytic NDV virus augmented the antitumor efficacy of the parental virus rClone30, inhibiting tumor cell proliferation, inducing tumor cell fusion, and promoting apoptosis. Moreover, NDV carrying the IL24 gene inhibited microvessel formation in CAM experiments. Evaluation in a mouse model of liver cancer confirmed the therapeutic efficacy of oncolytic NDV viral therapy. Tumors in mice treated with oncolytic NDV virus significantly decreased in size, accompanied by tumor cell detachment and apoptosis evident in pathological sections. Furthermore, oncolytic NDV virus enhanced T cell and dendritic cell production and substantially improved the survival rate of mice with hepatocellular carcinoma, with rClone30-IL24(P/M) demonstrating significant therapeutic effects. This study establishes a basis for utilizing oncolytic NDV virus as an antitumor agent in clinical practice.


Sujet(s)
Interleukines , Virus de la maladie de Newcastle , Thérapie virale de cancers , Virus oncolytiques , Animaux , Virus de la maladie de Newcastle/génétique , Virus de la maladie de Newcastle/physiologie , Thérapie virale de cancers/méthodes , Virus oncolytiques/génétique , Virus oncolytiques/physiologie , Humains , Souris , Lignée cellulaire tumorale , Interleukines/génétique , Interleukines/métabolisme , Tumeurs du foie/thérapie , Souris de lignée BALB C , Carcinome hépatocellulaire/thérapie , Apoptose , Néovascularisation pathologique/thérapie , Prolifération cellulaire , Facteur de stimulation des colonies de granulocytes et de macrophages/génétique , Facteur de stimulation des colonies de granulocytes et de macrophages/métabolisme , Cellules dendritiques/immunologie , Lymphocytes T/immunologie
4.
Nat Prod Res ; : 1-8, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38916532

RÉSUMÉ

Two new polycyclic polyprenylated acylphloroglucinols, hyperguanyes A and B (1-2) together with eight known compounds (3-10), were isolated from Hypericum perforatum L. Their structures were determined by using comprehensive spectroscopic techniques and quantum chemical calculation. The in vitro anti-cholinesterase activity of all compounds were studied. Among them, compounds 1-4, 8 and 9 exhibited anti-AchE and anti-BchE effects with IC50 ranging from 0.34 ± 0.04 to 15.68 ± 0.54 µM.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124630, 2024 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-38865888

RÉSUMÉ

In this strategy, the fluorescence sensor Nap-Co-T1 employing the fluorescence resonance energy transfer (FRET) mechanism was designed and synthesized to have an efficient response to Heparin, and the FRET mechanism was explored for different excitation-emission wavelengths with different distances between the energy acceptor and the energy donor (comparing with fluorescence sensor Nap-TPA-T2). Upon the addition of Heparin, the fluorescence emission of Nap-Co-T1 was turned on at 565 nm, and the fluorescence color changed of the solution from colorless to bright yellow. The limit of detection (LOD) was as low as 0.04 µg/mL. With the addition of antagonistic protamine (PRTM) to the sensor complex with Heparin, the fluorescence emission was turned off to a certain extent, and the reversibility of the "off-on-off" system was maintained for five cycles or more. In addition, Nap-Co-T1 provides rapid and sensitive detection of Heparin in human serum albumin solution and artificial urine and is highly sensitive to environmental viscosity.


Sujet(s)
Transfert d'énergie par résonance de fluorescence , Héparine , Limite de détection , Héparine/analyse , Héparine/composition chimique , Transfert d'énergie par résonance de fluorescence/méthodes , Humains , Colorants fluorescents/composition chimique , Protamine/analyse , Protamine/composition chimique , Spectrométrie de fluorescence/méthodes
6.
Front Pharmacol ; 15: 1390872, 2024.
Article de Anglais | MEDLINE | ID: mdl-38835662

RÉSUMÉ

The purpose of this study was to assess the comparative efficacy of six programmed cell death-1 inhibitors (nivolumab, pembrolizumab, sintilimab, tislelizumab, toripalimab, and camrelizumab) that have been used as first-line therapy for Chinese patients with advanced non-small cell lung cancer (NSCLC), which remains unclear. We determined the differences in efficacy by observing patient survival data, with the goal of informing future treatment options. Retrospective data analysis from June 2015 to April 2023 included 913 patients across six groups: nivolumab (123%, 13.5%), pembrolizumab (421%, 46.1%), sintilimab (239%, 26.1%), tislelizumab (64%, 7.0%), toripalimab (39%, 4.3%), and camrelizumab (27%, 3.0%). The median progression-free survival (PFS) for each group was 16.0, 16.1, 18.4, 16.9, 23.7, and 12.8 months, and the median overall survival (OS) was 33.7, 36.1, 32.5, not reached, 30.9 and 46.0 months for the nivolumab, sintilimab, pembrolizumab, tislelizumab, toripalimab, and camrelizumab groups, respectively. While differences existed in the objective response rates among groups (p < 0.05), there were no significant differences (all p > 0.05) in PFS or OS. The findings suggest comparable efficacy among these PD-1 inhibitors for NSCLC treatment, underscoring their collective suitability and aiding treatment decisions.

7.
Eur J Med Chem ; 275: 116577, 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38875809

RÉSUMÉ

Sphingosine kinase 2 (SphK2) has emerged as a promising target for cancer therapy due to its critical role in tumor growth. However, the lack of potent and selective inhibitors has hindered its clinical application. Herein, we report the design and synthesis of a series of novel SphK2 inhibitors, culminating in the identification of compound 12q as a highly selective and potent inhibitor of SphK2. Molecular dynamics simulations suggest that the incorporation of larger substitution groups facilitates a more effective occupation of the binding site, thereby stabilizing the complex. Compared to the widely used inhibitor ABC294640, compound 12q exhibits superior anti-proliferative activity against various cancer cells, inducing G2 phase arrest and apoptosis in liver cancer cells HepG2. Notably, 12q inhibited migration and colony formation in HepG2 and altered intracellular sphingolipid content. Moreover, intraperitoneal administration of 12q in mice resulted in decreased levels of S1P. 12q provides a valuable tool compound for exploring the therapeutic potential of targeting SphK2 in cancer.

8.
Stem Cell Res ; 79: 103465, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38880015

RÉSUMÉ

Peripheral blood mononuclear cells (PBMCs) were obtained from a patient diagnosed with Familial Hemiplegic Migraine Type 3, who carried a heterozygous A > C mutation in the SCN1A gene and reprogrammed using CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit. The iPSC line maintained the mutation while expressing markers of pluripotency. Additionally, it exhibited a normal karyotype and demonstrated potential for in vitro differentiation into cells representing all three embryonic germ layers.

9.
Nucleic Acids Res ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38880495

RÉSUMÉ

Histone modifications are typically recognized by chromatin-binding protein modules (referred to as 'readers') to mediate fundamental processes such as transcription. Lysine ß-hydroxybutyrylation (Kbhb) is a new type of histone mark that couples metabolism to gene expression. However, the readers that prefer histone Kbhb remain elusive. This knowledge gap should be filled in order to reveal the molecular mechanism of this epigenetic regulation. Herein, we developed a chemical proteomic approach, relying upon multivalent photoaffinity probes to capture binders of the mark, and identified ENL as a novel target of H3K9bhb. Biochemical studies and CUT&Tag analysis further suggested that ENL favorably binds to H3K9bhb, and co-localizes with it on promoter regions to modulate gene expression. Notably, disrupting the interaction between H3K9bhb and ENL via structure-based mutation led to the suppressed expression of genes such MYC that drive cell proliferation. Together, our work offered a chemoproteomics approach and identified ENL as a novel histone ß-hydroxybutyrylation effector that regulates gene transcription, providing new insight into the regulation mechanism and function of histone Kbhb.


Elucidating the binding partners of histone post-translational modifications (hPTMs) is key to understanding epigenetic regulatory pathways. Lysine ß-hydroxybutyrylation (Kbhb) is a novel hPTM that couples metabolism to transcription. However, the effectors reading this mark are poorly understood as the Kbhb-mediated protein­protein interactions are weak and transient. Here, we presented a quantitative chemical proteomics approach using multivalent photoaffinity probes to robustly capture interactors of this mark. Thus, we identified ENL as a novel binder of Kbhb of histone H3 lysine 9 (H3K9bhb). Biochemical studies and CUT&Tag analysis further revealed that ENL recognizes H3K9bhb and co-localizes with it on gene promoters to modulate transcription and tumorigenesis. This study highlights ENL as a histone Kbhb reader for the regulation of transcription.

10.
MedComm (2020) ; 5(7): e573, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38882211

RÉSUMÉ

Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.

11.
ISA Trans ; 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38853110

RÉSUMÉ

This article studies the passive tracking problem of a wearable exoskeleton for lower limb rehabilitation therapy in the face of unmodeled dynamics, interactive friction, disturbance, prescribed performance constraints, and actuator faults. Adaptive neural networks and a smooth performance function are incorporated to establish a novel fault-tolerant tracking scheme, which can not only compensate for the nonlinear uncertainties and disturbance, but also handle the actuator fault with guaranteed tracking performance. A state feedback controller is presented by using the full state information and an output feedback controller is developed when the angular velocity is unavailable. The differential explosion issue of the backstepping technique is resolved by constructing a first-order filter and the unmeasurable velocity is estimated by a nonlinear observer. Semiglobal uniform boundedness stabilities of the exoskeleton system are proved via the Lyapunov direct method. The tracking performances of the designed control approaches are tested by comparative simulations.

12.
Nat Commun ; 15(1): 5256, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38898040

RÉSUMÉ

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.


Sujet(s)
Archéobactéries , Oxygène , Adémétionine , Adémétionine/métabolisme , Archéobactéries/génétique , Archéobactéries/métabolisme , Archéobactéries/enzymologie , Oxygène/métabolisme , Anaérobiose , Protéines d'archée/métabolisme , Protéines d'archée/génétique , Glycérol/métabolisme , Métagénome , Phylogenèse
13.
PLoS One ; 19(6): e0302530, 2024.
Article de Anglais | MEDLINE | ID: mdl-38905184

RÉSUMÉ

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1ß. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.


Sujet(s)
Chimiokine CXCL12 , Hépatocytes , Récepteurs CXCR4 , Fluorure de sodium , Récepteurs CXCR4/métabolisme , Récepteurs CXCR4/génétique , Humains , Chimiokine CXCL12/métabolisme , Chimiokine CXCL12/génétique , Fluorure de sodium/toxicité , Fluorure de sodium/pharmacologie , Hépatocytes/métabolisme , Hépatocytes/effets des médicaments et des substances chimiques , Transduction du signal/effets des médicaments et des substances chimiques , Facteur de transcription NF-kappa B/métabolisme , Lignée cellulaire , Interleukine-1 bêta/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Interleukine-6/métabolisme , Interleukine-6/génétique , Inflammation/métabolisme , Inflammation/induit chimiquement
14.
Nucleic Acids Res ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38908027

RÉSUMÉ

The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear. Herein, we demonstrate that Bacillus subtilis ParB (Spo0J), through the multimerization of its N-terminal domain, forms phase-separated condensates along a single DNA molecule, leading to the concurrent organization of DNA into a compact structure. Specifically, in addition to the co-condensation of ParB dimers with DNA, the engagement of well-established ParB condensates with DNA allows for the compression of adjacent DNA and the looping of distant DNA. Notably, the presence of CTP promotes the formation of condensates by a low amount of ParB at parS sites, triggering two-step DNA condensation. Remarkably, parS-centered ParB-DNA co-condensate constitutes a robust nucleoprotein architecture capable of withstanding disruptive forces of tens of piconewton. Overall, our findings unveil diverse modes of DNA compaction enabled by phase-separated ParB and offer new insights into the dynamic assembly and maintenance of the bacterial partition complex.

15.
J Hazard Mater ; 474: 134674, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-38823106

RÉSUMÉ

Peracetic acid (PAA) as emerging oxidant in advanced oxidation processes (AOPs) has attracted widespread attention in purifying water pollution. In this research, the removal of target contaminant (sulfamethoxazole, SMX) was investigated through PAA activation by a facile catalyst (Co@C), and the active sites of catalyst were identified as sp3-C, Oads, and Co0 by correlation analysis. Especially, different pH adjustment strategies were designed, including System A (adjusting pH after adding PAA) and System B (adjusting pH before adding PAA), to investigate the impact of oxidant acidity and alkalinity on solution microenvironment as well as effect and mechanism of pollutant removal. The results showed that HO· and CH3C(O)OO· dominated in System A, while Co(IV)O2+ was also observed in System B. Both systems showed optimal SMX degradation (98 %). However, System A exhibited excellent water quality tolerance (efficiency > 78 %), superior sustained catalyst activation (efficiency > 80 % in 40 h), less ion leaching (41 µg L-1), and lower products toxicity. Moreover, the pH of solution after reaction in System B was intensely acidic, requiring costly pH adjustments for discharge. This study unveils the strategy of adjusting pH after adding PAA is preferable for water purification, enriching the emerging research of PAA-based AOPs for the remediation of environments.

16.
Transl Res ; 272: 68-80, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38851532

RÉSUMÉ

In up to one-third of nonalcoholic fatty liver disease (NAFLD) patients, simple steatosis progresses to its more severe form, nonalcoholic steatohepatitis (NASH), but the precise mechanisms underlying this transition are not fully understood. Toll/interleukin-1 receptor 8 (TIR8), a conventional innate immune regulator highly expressed in hepatic tissue, has shown potential for ameliorating various inflammation-related disorders. However, its role in NASH pathogenesis, especially its regulatory effects on lipid metabolism and inflammatory responses, is still unclear. Here, using a TIR8 knockout (TIR8KO) mouse model and mass spectrometry analyses, we found that TIR8KO mice displayed aggravated hepatic steatosis and inflammation, whereas TIR8 overexpression attenuated these adverse effects. Ectopic TIR8 expression counteracts free fatty acid (FFA)-induced PPARα inhibition and downstream signaling. A decrease in TIR8 levels in hepatocytes heightened lipopolysaccharide (LPS) sensitivity. Notably, FFA stimulation led to a direct interaction between TIR8 and proteasome subunit alpha type 4 (PSMA4), facilitating TIR8 degradation. These results revealed that TIR8 safeguards PPARα-regulated lipid metabolism and mitigates inflammation induced by external factors during NASH progression. Our study highlights TIR8 as a promising target for NASH therapy, indicating the potential of TIR8 agonists in treatment strategies.

17.
Int Immunopharmacol ; 136: 112385, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-38850788

RÉSUMÉ

BACKGROUND: Myocarditis related to immune checkpoint inhibitors (ICIs) treatment is a rare but potentially life-threatening adverse event. To gain insight into this condition, we analyzed the clinical characteristics and prognosis of patients with ICI-related myocarditis. METHODS: Data on the clinical characteristics, management, and outcomes of patients diagnosed with ICI-related myocarditis between August 2018 and August 2023 in our institution were gathered retrospectively from medical records. Outcomes included the occurrence of major adverse cardiac events (MACE). RESULTS: Among 8875 patients who received ICI therapy, 31 patients experienced ICI-related myocarditis. These 31 patients had a mean age of 62 ± 12 years and included 24 (77.4 %) males and 19 patients (61.3 %) with at least one risk factor for cardiovascular disease. The median duration from ICI initiation to the onset of myocarditis symptoms was 6.3 weeks (interquartile range, 4.3-8.1 weeks). Twenty-one patients (67.7 %) developed grade 3-4 myocarditis. Thirteen patients (42 %) experienced MACE after myocarditis onset, and 15 patients (48.4 %) showed a troponin rise > 4 times the maximum limit of the standard range. On receiver operating characteristic curve analysis, troponin level could predict MACE in patients with ICI-related myocarditis with an area under the curve of 0.82 (95 % confidence interval [CI]: 0.66-0.98, p = 0.003). From Kaplan-Meier analysis, the occurrence of MACE (p = 0.002) was an independent influencing factor on patients' overall survival. CONCLUSIONS: ICI-related myocarditis frequently leads to MACE, which is associated with poor prognosis. Elevated troponin levels and electrocardiogram abnormalities in these patients may help predict the occurrence of MACE.


Sujet(s)
Inhibiteurs de points de contrôle immunitaires , Myocardite , Humains , Myocardite/induit chimiquement , Myocardite/diagnostic , Mâle , Inhibiteurs de points de contrôle immunitaires/effets indésirables , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Adulte d'âge moyen , Femelle , Études rétrospectives , Sujet âgé , Pronostic , Facteurs de risque , Troponine/sang
18.
Phys Rev Lett ; 132(22): 226003, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38877959

RÉSUMÉ

The nature of the anomalous metal state has been a major puzzle in condensed matter physics for more than three decades. Here, we report systematic investigation and modulation of the anomalous metal states in high-temperature interface superconductor FeSe films on SrTiO_{3} substrate. Remarkably, under zero magnetic field, the anomalous metal state persists up to 20 K in pristine FeSe films, an exceptionally high temperature standing out from previous observations. In stark contrast, for the FeSe films with nanohole arrays, the characteristic temperature of the anomalous metal state is considerably reduced. We demonstrate that the observed anomalous metal states originate from the quantum tunneling of vortices adjusted by the Ohmic dissipation. Our work offers a perspective for understanding the origin and modulation of the anomalous metal states in two-dimensional bosonic systems.

19.
Anal Chem ; 96(24): 9780-9789, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38848497

RÉSUMÉ

Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.


Sujet(s)
Aptamères nucléotidiques , Techniques de biocapteur , Caries dentaires , Salive , Streptococcus mutans , Salive/microbiologie , Salive/composition chimique , Streptococcus mutans/isolement et purification , Techniques de biocapteur/instrumentation , Caries dentaires/diagnostic , Caries dentaires/microbiologie , Aptamères nucléotidiques/composition chimique , Humains , Bleu de méthylène/composition chimique , Techniques électrochimiques/instrumentation
20.
Biomed Pharmacother ; 176: 116862, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38850656

RÉSUMÉ

Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/ß-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.


Sujet(s)
Flavanones , Tumeurs , Humains , Flavanones/pharmacologie , Flavanones/usage thérapeutique , Animaux , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Antinéoplasiques d'origine végétale/pharmacologie , Antinéoplasiques d'origine végétale/usage thérapeutique , Apoptose/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Microenvironnement tumoral/effets des médicaments et des substances chimiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...