Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 64
Filtrer
1.
Front Oncol ; 14: 1399296, 2024.
Article de Anglais | MEDLINE | ID: mdl-39309734

RÉSUMÉ

Objectives: To develop and validate a deep learning (DL) based automatic segmentation and classification system to classify benign and malignant BI-RADS 4 lesions imaged with ABVS. Methods: From May to December 2020, patients with BI-RADS 4 lesions from Centre 1 and Centre 2 were retrospectively enrolled and divided into a training set (Centre 1) and an independent test set (Centre 2). All included patients underwent an ABVS examination within one week before the biopsy. A two-stage DL framework consisting of an automatic segmentation module and an automatic classification module was developed. The preprocessed ABVS images were input into the segmentation module for BI-RADS 4 lesion segmentation. The classification model was constructed to extract features and output the probability of malignancy. The diagnostic performances among different ABVS views (axial, sagittal, coronal, and multi-view) and DL architectures (Inception-v3, ResNet 50, and MobileNet) were compared. Results: A total of 251 BI-RADS 4 lesions from 216 patients were included (178 in the training set and 73 in the independent test set). The average Dice coefficient, precision, and recall of the segmentation module in the test set were 0.817 ± 0.142, 0.903 ± 0.183, and 0.886 ± 0.187, respectively. The DL model based on multiview ABVS images and Inception-v3 achieved the best performance, with an AUC, sensitivity, specificity, PPV, and NPV of 0.949 (95% CI: 0.945-0.953), 82.14%, 95.56%, 92.00%, and 89.58%, respectively, in the test set. Conclusions: The developed multiview DL model enables automatic segmentation and classification of BI-RADS 4 lesions in ABVS images.

2.
Neuron ; 2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39181135

RÉSUMÉ

Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.

4.
Sci Signal ; 17(848): eadl1030, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39106320

RÉSUMÉ

Hexanucleotide repeat expansion in the C9ORF72 gene is the most frequent inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion results in multiple dipeptide repeat proteins, among which arginine-rich poly-GR proteins are highly toxic to neurons and decrease the rate of protein synthesis. We investigated whether the effect on protein synthesis contributes to neuronal dysfunction and degeneration. We found that the expression of poly-GR proteins inhibited global translation by perturbing translation elongation. In iPSC-differentiated neurons, the translation of transcripts with relatively slow elongation rates was further slowed, and stalled, by poly-GR. Elongation stalling increased ribosome collisions and induced a ribotoxic stress response (RSR) mediated by ZAKα that increased the phosphorylation of the kinase p38 and promoted cell death. Knockdown of ZAKα or pharmacological inhibition of p38 ameliorated poly-GR-induced toxicity and improved the survival of iPSC-derived neurons from patients with C9ORF72-ALS/FTD. Our findings suggest that targeting the RSR may be neuroprotective in patients with ALS/FTD caused by repeat expansion in C9ORF72.


Sujet(s)
Sclérose latérale amyotrophique , Protéine C9orf72 , Expansion de séquence répétée de l'ADN , Démence frontotemporale , Cellules souches pluripotentes induites , Neurones , Protéine C9orf72/génétique , Protéine C9orf72/métabolisme , Sclérose latérale amyotrophique/génétique , Sclérose latérale amyotrophique/métabolisme , Sclérose latérale amyotrophique/anatomopathologie , Humains , Démence frontotemporale/génétique , Démence frontotemporale/métabolisme , Démence frontotemporale/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Cellules souches pluripotentes induites/métabolisme , Expansion de séquence répétée de l'ADN/génétique , Élongation de la traduction , p38 Mitogen-Activated Protein Kinases/métabolisme , p38 Mitogen-Activated Protein Kinases/génétique , Stress physiologique/génétique , Ribosomes/métabolisme , Ribosomes/génétique
5.
Front Cell Infect Microbiol ; 14: 1423662, 2024.
Article de Anglais | MEDLINE | ID: mdl-39206042

RÉSUMÉ

Objective: This study aims to investigate the pathogenesis of hyperglycemia and its associated vasculopathy using multiomics analyses in diabetes and impaired glucose tolerance, and validate the mechanism using the cell experiments. Methods: In this study, we conducted a comprehensive analysis of the metagenomic sequencing data of diabetes to explore the key genera related to its occurrence. Subsequently, participants diagnosed with impaired glucose tolerance (IGT), and healthy subjects, were recruited for fecal and blood sample collection. The dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed using 16S rDNA sequencing and liquid chromatograph mass spectrometry, respectively. The regulation of gene and protein expression was evaluated through mRNA sequencing and data-independent acquisition technology, respectively. The specific mechanism by which GM dysbiosis affects hyperglycemia and its related vasculopathy was investigated using real-time qPCR, Western blotting, and enzyme-linked immunosorbent assay techniques in HepG2 cells and neutrophils. Results: Based on the published data, the key alterable genera in the GM associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and Lachnoclostridium. The related metabolic pathways were identified as cholate degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium displayed similar alterations in patients with IGT compared to those observed in patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA) and carnosine (CARN, a downstream metabolite of histidine and alanine) were both found to be decreased, which in turn regulated the expression of proteins in plasma and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth factor-binding protein 3 and interleukin-6 due to their impact on blood glucose regulation and associated vascular inflammation. Both proteins were found to be suppressed by TUDCA and CARN in HepG2 cells and neutrophils. Conclusion: Dysbiosis of the GM occurred throughout the entire progression from IGT to diabetes, characterized by an increase in Blautia and a decrease in Faecalibacterium, leading to reduced levels of TUDCA and CARN, which alleviated their inhibition on the expression of insulin-like growth factor-binding protein 3 and interleukin-6, contributing to the development of hyperglycemia and associated vasculopathy.


Sujet(s)
Carnosine , Dysbiose , Fèces , Microbiome gastro-intestinal , Humains , Dysbiose/microbiologie , Carnosine/métabolisme , Mâle , Fèces/microbiologie , Intolérance au glucose/métabolisme , Inflammation/métabolisme , Cellules HepG2 , Métagénomique , Femelle , Adulte d'âge moyen , Acide taurochénodésoxycholique/métabolisme , Acide taurochénodésoxycholique/pharmacologie , Hyperglycémie/métabolisme , Granulocytes neutrophiles/métabolisme , ARN ribosomique 16S/génétique , Bactéries/classification , Bactéries/métabolisme , Bactéries/génétique
6.
CNS Neurosci Ther ; 30(8): e14896, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39107944

RÉSUMÉ

PURPOSE: To explore the microstate characteristics and underlying brain network activity of Ménière's disease (MD) patients based on high-density electroencephalography (EEG), elucidate the association between microstate dynamics and clinical manifestation, and explore the potential of EEG microstate features as future neurobiomarkers for MD. METHODS: Thirty-two patients diagnosed with MD and 29 healthy controls (HC) matched for demographic characteristics were included in the study. Dysfunction and subjective symptom severity were assessed by neuropsychological questionnaires, pure tone audiometry, and vestibular function tests. Resting-state EEG recordings were obtained using a 256-channel EEG system, and the electric field topographies were clustered into four dominant microstate classes (A, B, C, and D). The dynamic parameters of each microstate were analyzed and utilized as input for a support vector machine (SVM) classifier to identify significant microstate signatures associated with MD. The clinical significance was further explored through Spearman correlation analysis. RESULTS: MD patients exhibited an increased presence of microstate class C and a decreased frequency of transitions between microstate class A and B, as well as between class A and D. The transitions from microstate class A to C were also elevated. Further analysis revealed a positive correlation between equilibrium scores and the transitions from microstate class A to C under somatosensory challenging conditions. Conversely, transitions between class A and B were negatively correlated with vertigo symptoms. No significant correlations were detected between these characteristics and auditory test results or emotional scores. Utilizing the microstate features identified via sequential backward selection, the linear SVM classifier achieved a sensitivity of 86.21% and a specificity of 90.61% in distinguishing MD patients from HC. CONCLUSIONS: We identified several EEG microstate characteristics in MD patients that facilitate postural control yet exacerbate subjective symptoms, and effectively discriminate MD from HC. The microstate features may offer a new approach for optimizing cognitive compensation strategies and exploring potential neurobiological markers in MD.


Sujet(s)
Électroencéphalographie , Maladie de Ménière , Humains , Mâle , Femelle , Électroencéphalographie/méthodes , Maladie de Ménière/physiopathologie , Maladie de Ménière/diagnostic , Maladie de Ménière/psychologie , Adulte d'âge moyen , Adulte , Cognition/physiologie , Adaptation physiologique/physiologie , Machine à vecteur de support , Tests neuropsychologiques , Sujet âgé
7.
Regen Ther ; 26: 290-298, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-39022600

RÉSUMÉ

Tendon injury is a common disorder of the musculoskeletal system, with a higher possibility of occurrence in elderly individuals and athletes. After a tendon injury, the tendon suffers from inadequate and slow healing, resulting in the formation of fibrotic scar tissue, ending up with inferior functional properties. Therapeutic strategies involving the application of growth factors have been advocated to promote tendon healing. Growth and differentiation-5 (GDF-5) represents one such factor that has shown promising effect on tendon healing in animal models and in vitro cultures. Although promising, these studies are limited as the molecular mechanisms by which GDF-5 exerts its effect remain incompletely understood. Starting from broadly introducing essential elements of current understanding about GDF-5, the present review aims to define the effect of GDF-5 and its possible mechanisms of action in tendon healing. Nevertheless, we still need more in vivo studies to explore dosage, application time and delivery strategy of GDF-5, so as to pave the way for future clinical translation.

8.
Front Vet Sci ; 11: 1382239, 2024.
Article de Anglais | MEDLINE | ID: mdl-38978635

RÉSUMÉ

Both acute and chronic tendon injuries are the most frequently occurring musculoskeletal diseases in human and veterinary medicine, with a limited repertoire of successful and evidenced-based therapeutic strategies. Inflammation has been suggested as a key driver for the formation of scar and adhesion tissue following tendon acute injury, as well as pathological alternations of degenerative tendinopathy. However, prior efforts to completely block this inflammatory process have yet to be largely successful. Recent investigations have indicated that a more precise targeted approach for modulating inflammation is critical to improve outcomes. The nuclear factor-kappaB (NF-κB) is a typical proinflammatory signal transduction pathway identified as a key factor leading to tendon disorders. Therefore, a comprehensive understanding of the mechanism or regulation of NF-κB in tendon disorders will aid in developing targeted therapeutic strategies for human and veterinary tendon disorders. In this review, we discuss what is currently known about molecular components and structures of basal NF-κB proteins and two activation pathways: the canonical activation pathway and the non-canonical activation pathway. Furthermore, we summarize the underlying mechanisms of the NF-κB signaling pathway in fibrosis and adhesion after acute tendon injury, as well as pathological changes of degenerative tendinopathy in all species and highlight the effect of targeting this signaling pathway in tendon disorders. However, to gain a comprehensive understanding of its mechanisms underlying tendon disorders, further investigations are required. In the future, extensive scientific examinations are warranted to full characterize the NF-κB, the exact mechanisms of action, and translate findings into clinical human and veterinary practice.

9.
Reprod Biol Endocrinol ; 22(1): 90, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39085925

RÉSUMÉ

BACKGROUND: Reduced endometrium thickness and receptivity are two important reasons for recurrent implantation failure (RIF). In order to elucidate differences between these two types of endometrial defects in terms of molecular signatures, cellular interactions, and structural changes, we systematically investigated the single-cell transcriptomic atlas across three distinct groups: RIF patients with thin endometrium (≤ 6 mm, TE-RIF), RIF patients with normal endometrium thickness (≥ 8 mm, NE-RIF), and fertile individuals (Control). METHODS: The late proliferative and mid-secretory phases of the endometrium were collected from three individuals in the TE-RIF group, two in the NE-RIF group, and three in the control group. The study employed a combination of advanced techniques. Single-cell RNA sequencing (scRNA-seq) was utilized to capture comprehensive transcriptomic profiles at the single-cell level, providing insights into gene expression patterns within specific cell types. Scanning and transmission electron microscopy were employed to visualize ultrastructural details of the endometrial tissue, while hematoxylin and eosin staining facilitated the examination of tissue morphology and cellular composition. Immunohistochemistry techniques were also applied to detect and localize specific protein markers relevant to endometrial receptivity and function. RESULTS: Through comparative analysis of differentially expressed genes among these groups and KEGG pathway analysis, the TE-RIF group exhibited notable dysregulations in the TNF and MAPK signaling pathways, which are pivotal in stromal cell growth and endometrial receptivity. Conversely, in the NE-RIF group, disturbances in energy metabolism emerged as a primary contributor to reduced endometrial receptivity. Additionally, using CellPhoneDB for intercellular communication analysis revealed aberrant interactions between epithelial and stromal cells, impacting endometrial receptivity specifically in the TE-RIF group. CONCLUSION: Overall, our findings provide valuable insights into the heterogeneous molecular pathways and cellular interactions associated with RIF in different endometrial conditions. These insights may pave the way for targeted therapeutic interventions aimed at improving endometrial receptivity and enhancing reproductive outcomes in patients undergoing ART. Further research is warranted to validate these findings and translate them into clinical applications for personalized fertility treatments. TRIAL REGISTRATION: Not applicable.


Sujet(s)
Implantation embryonnaire , Endomètre , Analyse sur cellule unique , Transcriptome , Humains , Femelle , Endomètre/métabolisme , Endomètre/anatomopathologie , Implantation embryonnaire/génétique , Implantation embryonnaire/physiologie , Adulte , Analyse sur cellule unique/méthodes , Analyse de profil d'expression de gènes/méthodes , Infertilité féminine/génétique , Infertilité féminine/métabolisme , Infertilité féminine/anatomopathologie , Grossesse
10.
J Clin Ultrasound ; 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39056502

RÉSUMÉ

OBJECTIVES: We aimed to evaluate the changes in renal cortical microperfusion and quantitative contrast-enhanced ultrasonography (CEUS) parameters after kidney transplantation, and to determine the evidence-based value of CEUS in predicting renal dysfunction. METHODS: The Embase, MEDLINE, Web of Science, and Cochrane Library databases were searched for relevant studies published from 2000 to 2023 on the use of CEUS to assess the renal cortical microcirculation after kidney transplantation. Subject terms and related keywords were combined, and a meta-analysis and systematic review were performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. RESULTS: The search yielded six studies involving 451 patients with moderate to high overall quality. The peak intensity (standardized mean difference [SMD]: -0.64, 95% confidence interval [CI] -1.13 to -0.15, p = 0.01) of CEUS was significantly lower in patients with renal dysfunction than in those with stable renal function. However, the time to peak (SMD: 0.28, 95% CI 0.04 to 0.52, p = 0.02) was significantly shorter in patients with renal dysfunction than in those with stable renal function. The total renal cortical microperfusion and renal cortical perfusion intensity were decreased, and the perfusion time was prolonged, in patients with renal dysfunction after kidney transplantation. CONCLUSION: CEUS parameters can reflect real-time changes in renal cortical microperfusion, thus providing a basis for the early diagnosis of renal dysfunction after kidney transplantation.

11.
Genetics ; 2024 Jul 28.
Article de Anglais | MEDLINE | ID: mdl-39067069

RÉSUMÉ

Terminal nucleotidyl transferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, expression of PUP-2, PUP-3, and especially PUP-4 limit uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that addition of U-tails to non-adenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.

12.
Chin Med ; 19(1): 87, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38879471

RÉSUMÉ

BACKGROUND: Shaoyao Decoction (SYD) is a widely recognized herbal formula utilized in traditional Chinese medicine for the treatment of diarrhea. Although it has demonstrated significant effectiveness in clinical practice for treating ulcerative colitis, the precise mechanisms by which it operates remain largely elusive. METHODS: The active ingredients of SYD were obtained by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), which were used to explore the potential pharmacological mechanism based on TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and PANTHER (Protein Analysis Through Evolutionary Relationships) classification system. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, mRNA sequencing, 16S rDNA sequencing and targeted metabolomics techniques were used to elucidate the mechanisms of SYD, and immunohistochemistry, immunofluorescence, enzyme linked immunosorbent assay, real time quantitative polymerase chain reaction and western blot were used to test the key targets. In addition, QGP-1 and H9 cells were performed to validate the discoveries from the animal experiments. RESULTS: In the mouse model of DSS-induced colitis, SYD effectively alleviated symptoms such as bloody stool, tissue damage, inflammation, intestinal flora dysbiosis and abnormal gene expression. Analyses of both differential expressed genes in colonic tissue and predicted 16S rDNA genes, as well as the analyses of targeted genes from TCMSP based on the active ingredients in UPLC-MS/MS of SYD, uncovered the enrichment of pathways involved in the biosynthesis and degredation of 5-hydroxytryptamine (5-HT). Interestingly, SYD suppressed the relative abundance of key genes in 5-HT synthesis, Tph1(Tryptophan hydroxylase 1) and Ddc (Dopa decarboxylase), in faeces from DSS-induced mice, leading to a reduction in the concentration of fecal 5-HT. Moreover, SYD augmented the production of butyric acid. Subsequently, increasing butyric acid influenced the metabolism of 5-HT in the organism through G protein-coupled receptor 43 by impeding its synthesis, facilitating its transport and degredation. These findings were additionally corroborated in a model utilizing enterochromaffin cell (QGP-1 cells). Furthermore, reduced levels of 5-HT hindered the activation of T lymphocytes (H9 cells) via the PKC (Protein kinase C) and NF-κB (Nuclear factor kappa-B) signaling pathways, by means of HTR1A (5-HT receptor 1A) and HTR3 (5-HT receptor 3). Additionally, diminished secretion of 5-HT resulted in reduced secretion of associated cytokines, thereby alleviating inflammation in the colon. CONCLUSION: Through modulation of T lymphocyte activation mediated by 5-HT metabolism in the local colon via the intestinal flora and its metabolite, SYD effectively mitigated colonic inflammation in DSS-induced mice.

13.
Article de Anglais | MEDLINE | ID: mdl-38752639

RÉSUMÉ

BACKGROUND: Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare disease that is characterized by autoinflammatory lesions on both bones and skin. The diverse manifestations and limited understanding of its etiology have hindered the diagnosis and treatment of this condition. SAPHO syndrome is also classified as a primary inflammatory osteitis. The onset of osteoarticular involvement in this disease is typically gradual, and the identification of associated biomarkers may be crucial for accurate diagnosis, effective treatment, and a better understanding of its underlying mechanisms. METHODS: We enrolled a total of 6 SAPHO patients and 3 healthy volunteers for this study. The miRNA expression profile in circulating exosomes was analyzed using next-generation sequencing. A total of 45 miRNAs were found to be differentially expressed in SAPHO patients. Linear discriminant analysis effect size analysis and Wilcoxon rank-sum test were employed to identify biomarkers based on these differentially expressed miRNAs. Among them, we selected 4 miRNAs as biomarkers for SAPHO syndrome, resulting in an area under the receiver operating characteristic curve of 1. RESULTS: The differentially expressed miRNAs indicated enrichment in immune system and endocrine system-related KEGG pathways, as well as infectious diseases and cancers. Furthermore, the most significantly enriched molecular functions in GO analysis were protein binding and catalytic activity. CONCLUSION: The exosomal miRNA profile in SAPHO syndrome exhibited significant changes, suggesting its potential as a candidate biomarker for diagnostic assistance, although further investigation is warranted to elucidate their role in the pathology.

14.
Proc Natl Acad Sci U S A ; 121(9): e2312784121, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38381783

RÉSUMÉ

The onset of apoptosis is characterized by a cascade of caspase activation, where initiator caspases are activated by a multimeric adaptor complex known as the apoptosome. In Drosophila melanogaster, the initiator caspase Dronc undergoes autocatalytic activation in the presence of the Dark apoptosome. Despite rigorous investigations, the activation mechanism for Dronc remains elusive. Here, we report the cryo-EM structures of an auto-inhibited Dark monomer and a single-layered, multimeric Dark/Dronc complex. Our biochemical analysis suggests that the auto-inhibited Dark oligomerizes upon binding to Dronc, which is sufficient for the activation of both Dark and Dronc. In contrast, the previously observed double-ring Dark apoptosome may represent a non-functional or "off-pathway" conformation. These findings expand our understanding on the molecular mechanism of apoptosis in Drosophila.


Sujet(s)
Protéines de Drosophila , Drosophila melanogaster , Animaux , Apoptosomes/composition chimique , Caspases/métabolisme , Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Protéines de Drosophila/métabolisme
15.
Genetics ; 226(2)2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38001375

RÉSUMÉ

The N6-methyladenosine (m6A) modification is a highly conserved RNA modification found in eukaryotic messenger RNAs (mRNAs). It plays a vital role in regulating various biological processes. Dysregulation of m6A modifications has been linked to a range of complex genetic diseases in humans. However, there has been a lack of comprehensive characterization and comparison of m6A modifications at the transcriptome-wide level within families. To address this gap, we profiled transcriptome-wide m6A methylation in 18 individuals across 6 Yoruba trio families. The m6A methylomes of these 18 individuals revealed that m6A modifications in children showed greater similarity to each other than to their parents. This suggests that m6A modifications are influenced by multiple factors rather than solely determined by genetic factors. Additionally, we found that mRNAs exhibiting m6A modifications specific to children were enriched in cell cycle control processes, while those with m6A modifications specific to parents were associated with chromatin modifications. Furthermore, our analysis on the interactions between differentially expressed m6A-related regulatory genes and age-related genes suggested that age might be one of the factors influencing m6A modifications. In summary, our study provided a valuable dataset that highlighted the differences and functional diversity of m6A modifications within and between trio families.


Sujet(s)
Adénosine , Transcriptome , Enfant , Humains , Épigénome , ARN messager , Méthylation
16.
Cell Mol Immunol ; 21(1): 6-18, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38114747

RÉSUMÉ

Emergency granulopoiesis and neutrophil mobilization that can be triggered by granulocyte colony-stimulating factor (G-CSF) through its receptor G-CSFR are essential for antibacterial innate defense. However, the epigenetic modifiers crucial for intrinsically regulating G-CSFR expression and the antibacterial response of neutrophils remain largely unclear. N6-methyladenosine (m6A) RNA modification and the related demethylase alkB homolog 5 (ALKBH5) are key epigenetic regulators of immunity and inflammation, but their roles in neutrophil production and mobilization are still unknown. We used cecal ligation and puncture (CLP)-induced polymicrobial sepsis to model systemic bacterial infection, and we report that ALKBH5 is required for emergency granulopoiesis and neutrophil mobilization. ALKBH5 depletion significantly impaired the production of immature neutrophils in the bone marrow of septic mice. In addition, Alkbh5-deficient septic mice exhibited higher retention of mature neutrophils in the bone marrow and defective neutrophil release into the circulation, which led to fewer neutrophils at the infection site than in their wild-type littermates. During bacterial infection, ALKBH5 imprinted production- and mobilization-promoting transcriptome signatures in both mouse and human neutrophils. Mechanistically, ALKBH5 erased m6A methylation on the CSF3R mRNA to increase the mRNA stability and protein expression of G-CSFR, consequently upregulating cell surface G-CSFR expression and downstream STAT3 signaling in neutrophils. The RIP-qPCR results confirmed the direct binding of ALKBH5 to the CSF3R mRNA, and the binding strength declined upon bacterial infection, accounting for the decrease in G-CSFR expression on bacteria-infected neutrophils. Considering these results collectively, we define a new role of ALKBH5 in intrinsically driving neutrophil production and mobilization through m6A demethylation-dependent posttranscriptional regulation, indicating that m6A RNA modification in neutrophils is a potential target for treating bacterial infections and neutropenia.


Sujet(s)
Infections bactériennes , Sepsie , Animaux , Humains , Souris , AlkB Homolog 5, RNA demethylase/métabolisme , Antibactériens , Granulocytes neutrophiles , Récepteur de facteur de croissance granulocytaire/génétique , Récepteur de facteur de croissance granulocytaire/métabolisme , ARN/métabolisme , ARN messager/métabolisme
17.
Front Cell Infect Microbiol ; 13: 1266295, 2023.
Article de Anglais | MEDLINE | ID: mdl-38089814

RÉSUMÉ

Background: Stenotrophomonas maltophilia is a multidrug-resistant (MDR) opportunistic pathogen with high resistance to most clinically used antimicrobials. The dissemination of MDR S. maltophilia and difficult treatment of its infection in clinical settings are global issues. Methods: To provide more genetic information on S. maltophilia and find a better treatment strategy, we isolated five S. maltophilia, SMYN41-SMYN45, from a Chinese community that were subjected to antibiotic susceptibility testing, biofilm formation assay, and whole-genome sequencing. Whole-genome sequences were compared with other thirty-seven S. maltophilia sequences. Results: The five S. maltophilia strains had similar antibiotic resistance profiles and were resistant to ß-lactams, aminoglycosides, and macrolides. They showed similar antimicrobial resistance (AMR) genes, including various efflux pumps, ß-lactamase resistance genes (blaL1/2), aminoglycoside resistance genes [aac(6'), aph(3'/6)], and macrolide-resistant gene (MacB). Genome sequencing analysis revealed that SMYN41-SMYN45 belonged to sequence type 925 (ST925), ST926, ST926, ST31, and ST928, respectively, and three new STs were identified (ST925, ST926, and ST928). Conclusion: This study provides genetic information by comparing genome sequences of several S. maltophilia isolates from a community of various origins, with the aim of optimizing empirical antibiotic medication and contributing to worldwide efforts to tackle antibiotic resistance.


Sujet(s)
Anti-infectieux , Infections bactériennes à Gram négatif , Stenotrophomonas maltophilia , Humains , Stenotrophomonas maltophilia/génétique , Antibactériens/pharmacologie , Anti-infectieux/pharmacologie , Résistance microbienne aux médicaments , Génomique , Tests de sensibilité microbienne
18.
BMC Med Genomics ; 16(1): 209, 2023 09 05.
Article de Anglais | MEDLINE | ID: mdl-37670284

RÉSUMÉ

BACKGROUND: Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS: A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS: Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION: This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.


Sujet(s)
Adénocarcinome , Tumeurs de l'estomac , Humains , Polymorphisme de nucléotide simple , Biologie informatique , Locus génétiques , Sous-type EP4 des récepteurs des prostaglandines E , AMP-Activated Protein Kinases
19.
Nat Cell Biol ; 25(9): 1359-1368, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37640841

RÉSUMÉ

N6-methyladenosine (m6A) methylation can be deposited on chromatin-associated RNAs (caRNAs) by the RNA methyltransferase complex (MTC) to regulate chromatin state and transcription. However, the mechanism by which MTC is recruited to distinct genomic loci remains elusive. Here we identify RBFOX2, a well-studied RNA-binding protein, as a chromatin factor that preferentially recognizes m6A on caRNAs. RBFOX2 can recruit RBM15, an MTC component, to facilitate methylation of promoter-associated RNAs. RBM15 also physically interacts with YTHDC1 and recruits polycomb repressive complex 2 (PRC2) to the RBFOX2-bound loci for chromatin silencing and transcription suppression. Furthermore, we found that this RBFOX2/m6A/RBM15/YTHDC1/PRC2 axis plays a critical role in myeloid leukaemia. Downregulation of RBFOX2 notably inhibits survival/proliferation of acute myeloid leukaemia cells and promotes their myeloid differentiation. RBFOX2 is also required for self-renewal of leukaemia stem/initiation cells and acute myeloid leukaemia maintenance. Our study presents a pathway of m6A MTC recruitment and m6A deposition on caRNAs, resulting in locus-selective chromatin regulation, which has potential therapeutic implications in leukaemia.


Sujet(s)
Leucémie myéloïde , Humains , Différenciation cellulaire/génétique , Chromatine/génétique , ARN , Facteurs d'épissage des ARN/génétique , Protéines de répression/génétique
20.
Life Sci Alliance ; 6(9)2023 09.
Article de Anglais | MEDLINE | ID: mdl-37402593

RÉSUMÉ

In Caenorhabditis elegans (C. elegans), onset of programmed cell death is marked with the activation of CED-3, a process that requires assembly of the CED-4 apoptosome. Activated CED-3 forms a holoenzyme with the CED-4 apoptosome to cleave a wide range of substrates, leading to irreversible cell death. Despite decades of investigations, the underlying mechanism of CED-4-facilitated CED-3 activation remains elusive. Here, we report cryo-EM structures of the CED-4 apoptosome and three distinct CED-4/CED-3 complexes that mimic different activation stages for CED-3. In addition to the previously reported octamer in crystal structures, CED-4, alone or in complex with CED-3, exists in multiple oligomeric states. Supported by biochemical analyses, we show that the conserved CARD-CARD interaction promotes CED-3 activation, and initiation of programmed cell death is regulated by the dynamic organization of the CED-4 apoptosome.


Sujet(s)
Protéines de Caenorhabditis elegans , Caenorhabditis elegans , Animaux , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/métabolisme , Apoptosomes/métabolisme , Apoptose
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE