RÉSUMÉ
To date, there have been three common methods for sampling the cerebral ischemic border zone in a rat model of transient middle cerebral artery occlusion (tMCAO): the "two o'clock method", the "diagonal method", and the "parallel line method". However, these methods have their own advantages and limitations. Here, we propose a modified technique (the "rectangular method") for sampling the ischemic border zone. A rat tMCAO model was prepared under the support of a compact small animal anesthesia machine. Cerebral blood flow was monitored by high-resolution laser Doppler to control the quality of modeling, and 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used for cerebral infarction location assessment. Superoxide dismutase 2 (SOD2), cysteinyl aspartate specific proteinase (caspase)-3, caspase-9, and heat shock protein 70 (HSP70) were used to verify the reliability and reproducibility of the rectangular method. The expression of biomarkers (SOD2, caspase-3, caspase-9, and HSP70) in the traditional (two o'clock method after TTC staining) and modified (rectangular method) groups were increased. There were no significant differences between the groups. The rectangular method proposed herein is based on a modification of the diagonal method and parallel line method, which could provide a directly observable infarct borderline and a sufficient sampling area for subsequent experimental operations regardless of the cerebral infarct location. The assessed biomarkers (SOD2, caspase-3, caspase-9, and HSP70) demonstrated the reliability and reproducibility of the rectangular method, which may facilitate inter-laboratory comparisons.
Sujet(s)
Encéphalopathie ischémique , Infarctus du territoire de l'artère cérébrale moyenne , Rats , Animaux , Caspase-3 , Caspase-9 , Reproductibilité des résultats , Marqueurs biologiques , Modèles animaux de maladie humaine , Encéphalopathie ischémique/métabolismeRÉSUMÉ
BACKGROUND: Road collisions are a significant source of traumatic brain injury (TBI). We aimed to determine the pattern of road injury related TBI (RI-TBI) incidence, as well as its temporal trends. METHODS: We collected detailed information on RI-TBI between 1990 and 2019, derived from the Global Burden of Disease Study 2019. Estimated annual percentage changes (EAPCs) of RI-TBI age standardized incidence rate (ASIR), by sex, region, and cause of road injuries, were assessed to quantify the temporal trends of RI-TBI burden. RESULTS: Globally, incident cases of RI-TBI increased 68.1% from 6,900,000 in 1990 to 11,600,000 in 2019. The overall ASIR increased by an average of 0.43% (95% CI 0.30%-0.56%) per year during this period. The ASIR of RI-TBI due to cyclist, motorcyclist and other road injuries increased between 1990 and 2019; the corresponding EAPCs were 0.56 (95% CI 0.37-0.75), 1.60 (95% CI 1.35-1.86), and 0.75 (95% CI 0.59-0.91), respectively. In contrast, the ASIR of RI-TBI due to motor vehicle and pedestrian decreased with an EAPC of -0.12 and -0.14 respectively. The changing pattern for RI-TBI was heterogeneous across countries and regions. The most pronounced increases were observed in Mexico (EAPC = 3.74), followed by China (EAPC = 2.45) and Lesotho (EAPC = 1.91). CONCLUSIONS: RI-TBI remains a major public health concern worldwide, although road safety legislations have contributed to the decreasing incidence in some countries. We found an unfavorable trend in several countries with a relatively low socio-demographic index, suggesting that much more targeted and specific approaches should be adopted in these areas to forestall the increase in RI-TBI.
Sujet(s)
Lésions traumatiques de l'encéphale , Charge mondiale de morbidité , Humains , Incidence , Lésions traumatiques de l'encéphale/épidémiologie , Chine , Mexique , Santé mondiale , Années de vie ajustées sur la qualitéRÉSUMÉ
BACKGROUND: Cancer-associated fibroblasts (CAFs), one of the main members of stromal cells in tumor microenvironment are proposed to play a central role in promoting tumor metastasis. It is unclear whether and how CAFs mediates tumor metastasis or chemoresistance in human ovarian cancer. METHODS: CAFs were extracted from human ovarian cancer tissues (OCs) of patients with different kinds of histological types. RESULTS: We found that CAFs showed more aggressive potency than those tumor cells, both of which were isolated from the same ovarian cancer specimen. Moreover, when co-cultured with CAFs, cell migration abilities of ovarian cancer cells (SKOV3, OVCAR3 and HEY) were significantly increased. Next, we preliminarily detected a higher CAFs density in sections of metastatic lesions than those in primary tumor site of primary OCs clinically. However, no significant difference of stromal derived factors-1α (SDF-1α) production from CAFs was found between primary and metastatic lesions. Additionally, in contrast with tumor cells, CAFs exhibited obvious apoptosis resistance when treated with cisplatin. Furthermore, we found that cisplatin-induced cytotoxicity and apoptosis were significantly inhibited by co-cultured with recombinant human SDF-1α in SKOV3 in a time and dose-dependent manner, and this effect was suppressed by the CXCR4 antagonist AMD3100. CONCLUSIONS: CAFs might be involved in the malignant metastasis in human ovarian cancer through promoting cell migration in tumor cells. And their resistance to cytotoxic agents might be mediated by paracrine SDF-1α/CXCR4 signaling in ovarian cancer.
Sujet(s)
Fibroblastes associés au cancer , Tumeurs de l'ovaire , Humains , Femelle , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/anatomopathologie , Fibroblastes associés au cancer/anatomopathologie , Chimiokine CXCL12 , Cisplatine/pharmacologie , Apoptose , Lignée cellulaire tumorale , Mouvement cellulaire , Fibroblastes , Prolifération cellulaire , Microenvironnement tumoralRÉSUMÉ
To date, there have been three common methods for sampling the cerebral ischemic border zone in a rat model of transient middle cerebral artery occlusion (tMCAO): the "two o'clock method", the "diagonal method", and the "parallel line method". However, these methods have their own advantages and limitations. Here, we propose a modified technique (the "rectangular method") for sampling the ischemic border zone. A rat tMCAO model was prepared under the support of a compact small animal anesthesia machine. Cerebral blood flow was monitored by high-resolution laser Doppler to control the quality of modeling, and 2,3,5-triphenyl tetrazolium chloride (TTC) staining was used for cerebral infarction location assessment. Superoxide dismutase 2 (SOD2), cysteinyl aspartate specific proteinase (caspase)-3, caspase-9, and heat shock protein 70 (HSP70) were used to verify the reliability and reproducibility of the rectangular method. The expression of biomarkers (SOD2, caspase-3, caspase-9, and HSP70) in the traditional (two o'clock method after TTC staining) and modified (rectangular method) groups were increased. There were no significant differences between the groups. The rectangular method proposed herein is based on a modification of the diagonal method and parallel line method, which could provide a directly observable infarct borderline and a sufficient sampling area for subsequent experimental operations regardless of the cerebral infarct location. The assessed biomarkers (SOD2, caspase-3, caspase-9, and HSP70) demonstrated the reliability and reproducibility of the rectangular method, which may facilitate inter-laboratory comparisons.
RÉSUMÉ
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Sujet(s)
Silicium , Stress physiologique , Agriculture , Plantes , SolRÉSUMÉ
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
RÉSUMÉ
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Sujet(s)
Silicium , Stress physiologique , Plantes , Sol , AgricultureRÉSUMÉ
Microsatellites, or simple sequence repeats (SSRs), in expressed sequence tags (ESTs) provide an opportunity for low cost SSR development. We looked for EST-SSRs in 403,511 ESTs (generated by 454 sequencing and representing 70,654 contigs and 52,082 singletons) from soybean globular stage embryos. Among 122,736 unique ESTs, 3,729 contained one or more SSRs. In total, 3,989 SSRs were identified including 304 mono, 1,374 di, 2,208 tri, 70 tetra, 13 penta and 20 hexanucleotide SSRs. Thirty three EST-SSRs were selected for primer design and polymorphism analysis using twenty soybean cultivars and one wild-type soybean. Successful amplification was obtained using 21 of these primer pairs, 11 of which detected polymorphisms in these soybean cultivars. These results demonstrated that 454 high throughput sequencing is a powerful tool for molecular marker development. From the 3,989 identified SSRs we expect to obtain a large number of makers with polymorphism among different soybean cultivars, which would be useful for analysis of genetic diversity and maker assisted selection in the soybean breeding programs.