Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chem Biol Interact ; 399: 111122, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38944328

RÉSUMÉ

Cadmium (Cd) is a widely used heavy metal and has recently been recognized as a possible source of human toxicity due to its ability to accumulate in organs. Accumulation of heavy metals has several adverse effects, including inducing inflammation, in multiple organs, such as the testis. However, how Cd ions are sensed by host cells and how tissue inflammation eventually occurs remains unclear. Here, we show that Cd activates the AIM2 inflammasome by mediating genomic DNA release into the cytoplasm after DNA damage via oxidative stress, to trigger IL-1ß secretion and pyroptosis. Specifically, the toxicity effects induced by Cd in cells were prevented by melatonin, which served as an antagonist of oxidative stress. Accordingly, in a mouse model, Cd-induced inflammation in the testis and consequential male reproductive dysfunction were effectively reversed by melatonin. Thus, our results suggest a function of AIM2 in Cd-mediated testis inflammation and identify AIM2 as a major pattern recognition receptor in response to heavy metal Cd ions.

2.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Article de Anglais | MEDLINE | ID: mdl-36869674

RÉSUMÉ

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Sujet(s)
Cadmium , Instabilité du génome , Infertilité masculine , Spermatocytes , Animaux , Humains , Mâle , Souris , Cadmium/toxicité , ADN/métabolisme , Réparation de l'ADN par jonction d'extrémités , Réparation de l'ADN , Instabilité du génome/effets des médicaments et des substances chimiques , Infertilité masculine/génétique , Infertilité masculine/métabolisme , Ions/métabolisme , Phosphorylation , Réparation de l'ADN par recombinaison , Spermatocytes/effets des médicaments et des substances chimiques
3.
Genes (Basel) ; 13(12)2022 12 19.
Article de Anglais | MEDLINE | ID: mdl-36553673

RÉSUMÉ

Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs-target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement.


Sujet(s)
microARN , Suidae/génétique , Animaux , microARN/génétique , microARN/métabolisme , Reproductibilité des résultats , Métabolisme lipidique , Phénotype , Tissu adipeux/métabolisme
4.
J Anim Sci Technol ; 64(2): 312-329, 2022 Mar.
Article de Anglais | MEDLINE | ID: mdl-35530409

RÉSUMÉ

Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

5.
BMC Genomics ; 22(1): 294, 2021 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-33888058

RÉSUMÉ

BACKGROUND: The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. RESULTS: A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. CONCLUSIONS: Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2 genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes.


Sujet(s)
Étude d'association pangénomique , Transcriptome , Animaux , Phénotype , Polymorphisme de nucléotide simple , Locus de caractère quantitatif , Suidae/génétique
6.
Biomed Res Int ; 2017: 7132941, 2017.
Article de Anglais | MEDLINE | ID: mdl-28828387

RÉSUMÉ

Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.


Sujet(s)
Consommation alimentaire/génétique , Étude d'association pangénomique , Pigmentation/génétique , Locus de caractère quantitatif/génétique , Fourrure animale/composition chimique , Animaux , Souris , Phénotype , Polymorphisme de nucléotide simple
7.
CNS Neurosci Ther ; 18(8): 659-66, 2012 Aug.
Article de Anglais | MEDLINE | ID: mdl-22620268

RÉSUMÉ

AIMS: Pioglitazone, known as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is used to treat type 2 diabetes mellitus (T2DM). T2DM has been associated with reduced performance on numerous domains of cognitive function. Here, we investigated the effects of pioglitazone on memory impairment in a mouse model with defects in insulin sensitivity and secretion, namely high-fat diet (HFD) streptozotocin (STZ)-induced diabetic mice. METHODS: ICR mice were fed with HFD for 4 weeks and then injected with a single low dose of STZ followed by continued HFD feeding for an additional 4 weeks. Pioglitazone (18 mg/kg, 9 mg/kg body weight) was orally administered for 6 weeks once daily. Y-maze test and Morris water maze test (MWM) were employed for testing learning and memory. Serum glucose, serum insulin, serum triglyceride, brain ß-amyloid peptide (Aß), brain ß-site amyloid precursor protein cleaving enzyme (BACE1), brain nuclear factor κB (NF-κB), and brain receptor for advanced glycation end products (RAGE) were also tested. RESULTS: The STZ/HFD diabetic mice, characterized by hyperglycemia, hyperlipemia and hypoinsulinemia, performed poorly on Y-maze and MWM hence reflecting impairment of learning and memory behavior with increases of Aß40/Aß42, BACE1, NF-κB, and RAGE in brain. Treatment of PPARγ agonist, pioglitazone (18 or 9 mg/kg body weight), significantly reversed diabetes-induced impairment of learning and memory behavior, which is involved in decreases of Aß40/Aß42 via inhibition of NF-κB, BACE1 and RAGE in brain as well as attenuation of hyperglycemia, hyperlipemia, and hypoinsulinemia. CONCLUSIONS: It is concluded that PPARγ agonist pioglitazone may be considered as potential pharmacological agents for the management of cognitive dysfunction in T2DM.


Sujet(s)
Diabète de type 2/complications , Diabète de type 2/psychologie , Hypoglycémiants/usage thérapeutique , Troubles de la mémoire/traitement médicamenteux , Troubles de la mémoire/étiologie , Récepteur PPAR gamma/agonistes , Thiazolidinediones/usage thérapeutique , Amyloid precursor protein secretases/métabolisme , Peptides bêta-amyloïdes/métabolisme , Animaux , Aspartic acid endopeptidases/métabolisme , Comportement animal/effets des médicaments et des substances chimiques , Glycémie/métabolisme , Technique de Western , Chimie du cerveau/effets des médicaments et des substances chimiques , Troubles de la cognition/traitement médicamenteux , Troubles de la cognition/étiologie , Troubles de la cognition/psychologie , Diabète expérimental/complications , Diabète expérimental/traitement médicamenteux , Diabète expérimental/psychologie , Test ELISA , Produits terminaux de glycation avancée/métabolisme , Immunohistochimie , Insuline/sang , Mâle , Apprentissage du labyrinthe , Souris , Souris de lignée ICR , Facteur de transcription NF-kappa B/métabolisme , Pioglitazone , Triglycéride/sang
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...