Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
1.
Brief Bioinform ; 25(4)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-39038938

RÉSUMÉ

With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.


Sujet(s)
Vieillissement , Compléments alimentaires , Microbiome gastro-intestinal , Probiotiques , Probiotiques/usage thérapeutique , Probiotiques/administration et posologie , Humains , Sujet âgé , Femelle , Mâle , Sujet âgé de 80 ans ou plus , Adulte d'âge moyen , Lactobacillus/génétique , Métagénomique/méthodes , Bifidobacterium
2.
Phys Eng Sci Med ; 47(2): 477-489, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38361179

RÉSUMÉ

Hemodynamic parameters derived from pulse wave analysis have been shown to predict long-term outcomes in patients with heart failure (HF). Here we aimed to develop a deep-learning based algorithm that incorporates pressure waveforms for the identification and risk stratification of patients with HF. The first study, with a case-control study design to address data imbalance issue, included 431 subjects with HF exhibiting typical symptoms and 1545 control participants with no history of HF (non-HF). Carotid pressure waveforms were obtained from all the participants using applanation tonometry. The HF score, representing the probability of HF, was derived from a one-dimensional deep neural network (DNN) model trained with characteristics of the normalized carotid pressure waveform. In the second study of HF patients, we constructed a Cox regression model with 83 candidate clinical variables along with the HF score to predict the risk of all-cause mortality along with rehospitalization. To identify subjects using the HF score, the sensitivity, specificity, accuracy, F1 score, and area under receiver operating characteristic curve were 0.867, 0.851, 0.874, 0.878, and 0.93, respectively, from the hold-out cross-validation of the DNN, which was better than other machine learning models, including logistic regression, support vector machine, and random forest. With a median follow-up of 5.8 years, the multivariable Cox model using the HF score and other clinical variables outperformed the other HF risk prediction models with concordance index of 0.71, in which only the HF score and five clinical variables were independent significant predictors (p < 0.05), including age, history of percutaneous coronary intervention, concentration of sodium in the emergency room, N-terminal pro-brain natriuretic peptide, and hemoglobin. Our study demonstrated the diagnostic and prognostic utility of arterial waveforms in subjects with HF using a DNN model. Pulse wave contains valuable information that can benefit the clinical care of patients with HF.


Sujet(s)
Défaillance cardiaque , , Humains , Défaillance cardiaque/imagerie diagnostique , Mâle , Femelle , Adulte d'âge moyen , Études cas-témoins , Sujet âgé , Artères/imagerie diagnostique , Modèles des risques proportionnels , Courbe ROC , Appréciation des risques , Apprentissage profond , Analyse de l'onde de pouls
3.
J Transl Med ; 21(1): 485, 2023 07 20.
Article de Anglais | MEDLINE | ID: mdl-37475016

RÉSUMÉ

BACKGROUND: The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS: In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS: Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS: In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.


Sujet(s)
Facteur de transcription NF-kappa B , Tumeurs du sein triple-négatives , Humains , Facteur de transcription NF-kappa B/génétique , Facteur de transcription NF-kappa B/métabolisme , Tumeurs du sein triple-négatives/traitement médicamenteux , Facteur de nécrose tumorale alpha/génétique , Facteur de nécrose tumorale alpha/usage thérapeutique , Transduction du signal/génétique , Carcinogenèse , Apprentissage machine
4.
Front Aging Neurosci ; 15: 1162057, 2023.
Article de Anglais | MEDLINE | ID: mdl-37346147

RÉSUMÉ

Introduction: The microbiota-gut-brain axis is implicated in Alzheimer's disease. Gut microbiota alterations in mild cognitive impairment (MCI) are inconsistent and remain to be understood. This study aims to investigate the gut microbial composition associated with MCI, cognitive functions, and structural brain differences. Methods: A nested case-control study was conducted in a community-based prospective cohort where detailed cognitive functions and structural brain images were collected. Thirty-one individuals with MCI were matched to sixty-five cognitively normal controls by age strata, gender, and urban/rural area. Fecal samples were examined using 16S ribosomal RNA (rRNA) V3-V4 sequencing. Compositional differences between the two groups were identified and correlated with the cognitive functions and volumes/thickness of brain structures. Results: There was no significant difference in alpha and beta diversity between MCIs and cognitively normal older adults. However, the abundance of the genus Ruminococcus, Butyricimonas, and Oxalobacter decreased in MCI patients, while an increased abundance of nine other genera, such as Flavonifractor, were found in MCIs. Altered genera discriminated MCI patients well from controls (AUC = 84.0%) and were associated with attention and executive function. Conclusion: This study provides insights into the role of gut microbiota in the neurodegenerative process.

5.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Article de Anglais | MEDLINE | ID: mdl-37369202

RÉSUMÉ

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Sujet(s)
Épilepsie généralisée , Humains , Épilepsie généralisée/génétique , Phénotype , Allèles , Encéphale , Fréquence d'allèle/génétique
6.
medRxiv ; 2023 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-36974069

RÉSUMÉ

Previous studies suggested that severe epilepsies e.g., developmental and epileptic encephalopathies (DEE) are mainly caused by ultra-rare de novo genetic variants. For milder phenotypes, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 controls. Here, we separately analyzed three different groups of epilepsies : severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in controls at a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD≥20), and to have an odds ratio in epilepsy cases ≥2. We identified genes enriched with QRVs in DEE (n=21), NAFE (n=72), and GGE (n=32) - the number of enriched genes are found greatest in NAFE and least in DEE. This suggests that rare variants may play a more important role for causality of NAFE than in DEE. Moreover, we found that QRV-carrying genes e.g., HSGP2, FLNA or TNC are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE, while in DEE and GGE, the contribution of such variants appears more limited.

7.
Genes (Basel) ; 14(1)2023 01 03.
Article de Anglais | MEDLINE | ID: mdl-36672877

RÉSUMÉ

BACKGROUND: Colorectal cancer (CRC) is one of the most fatal malignancies worldwide, and this is in part due to high rates of tumor recurrence in these patients. Currently, TNM staging remains the gold standard for predicting prognosis and recurrence in CRC patients; however, this approach is inadequate for identifying high-risk patients with the highest likelihood of disease recurrence. Recent evidence has revealed that enhancer RNAs (eRNAs) represent a higher level of cellular regulation, and their expression is frequently dysregulated in several cancers, including CRC. However, the clinical significance of eRNAs as recurrence predictor biomarkers in CRC remains unexplored, which is the primary aim of this study. RESULTS: We performed a systematic analysis of eRNA expression profiles in colon cancer (CC) and rectal cancer (RC) patients from the TCGA dataset. By using rigorous biomarker discovery approaches by splitting the entire dataset into a training and testing cohort, we identified a 22-eRNA panel in CC and a 19-eRNA panel in RC for predicting tumor recurrence. The Kaplan-Meier analysis showed that biomarker panels robustly stratified low and high-risk CC (p = 7.29 × 10-5) and RC (p = 6.81 × 10-3) patients with recurrence. Multivariate and LASSO Cox regression models indicated that both biomarker panels were independent predictors of recurrence and significantly superior to TNM staging in CC (HR = 11.89, p = 9.54 × 10-4) and RC (HR = 3.91, p = 3.52 × 10-2). Notably, the ROC curves demonstrated that both panels exhibited excellent recurrence prediction accuracy in CC (AUC = 0.833; 95% CI: 0.74-0.93) and RC (AUC = 0.834; 95% CI: 0.72-0.92) patients. Subsequently, a combination signature that included the eRNA panels and TNM staging achieved an even greater predictive accuracy in patients with CC (AUC = 0.85). CONCLUSIONS: Herein, we report a novel eRNA signature for predicting recurrence in patients with CRC. Further experimental validation in independent clinical cohorts, these biomarkers can potentially improve current risk stratification approaches for guiding precision oncology treatments in patients suffering from this lethal malignancy.


Sujet(s)
Tumeurs du côlon , Tumeurs colorectales , Tumeurs du rectum , Humains , Transcriptome/génétique , Tumeurs colorectales/diagnostic , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Récidive tumorale locale/génétique , Récidive tumorale locale/anatomopathologie , Médecine de précision , ARN
8.
Sci Rep ; 12(1): 13507, 2022 08 05.
Article de Anglais | MEDLINE | ID: mdl-35931711

RÉSUMÉ

The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein-protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes' haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.


Sujet(s)
Maladies chromosomiques , Transcriptome , Animaux , Encéphale/métabolisme , Délétion de segment de chromosome , Maladies chromosomiques/métabolisme , Chromosomes humains de la paire 15/génétique , Humains , Déficience intellectuelle , Souris , Crises épileptiques
9.
Cell Rep ; 40(2): 111065, 2022 07 12.
Article de Anglais | MEDLINE | ID: mdl-35830797

RÉSUMÉ

Tissue-resident macrophages (TRMs) are heterogeneous cell populations found throughout the body. Depending on their location, they perform diverse functions maintaining tissue homeostasis and providing immune surveillance. To survive and function within, TRMs adapt metabolically to the distinct microenvironments. However, little is known about the metabolic signatures of TRMs. The thymus provides a nurturing milieu for developing thymocytes yet efficiently removes those that fail the selection, relying on the resident thymic macrophages (TMφs). This study harnesses multiomics analyses to characterize TMφs and unveils their metabolic features. We find that the pentose phosphate pathway (PPP) is preferentially activated in TMφs, responding to the reduction-oxidation demands associated with the efferocytosis of dying thymocytes. The blockade of PPP in Mφs leads to decreased efferocytosis, which can be rescued by reactive oxygen species (ROS) scavengers. Our study reveals the key role of the PPP in TMφs and underscores the importance of metabolic adaptation in supporting Mφ efferocytosis.


Sujet(s)
Macrophages , Voie des pentoses phosphates , Macrophages/métabolisme , Phagocytose , Espèces réactives de l'oxygène/métabolisme
10.
BMC Med Genomics ; 14(Suppl 3): 300, 2022 05 02.
Article de Anglais | MEDLINE | ID: mdl-35501896

RÉSUMÉ

BACKGROUND: Recently, non-coding RNAs are of growing interest, and more scientists attach importance to research on their functions. Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts longer than 200 nucleotides. We already knew that lncRNAs are related to cancers and will be dysregulated in them. But most of their functions are still left to further study. A mechanism of RNA regulation, known as competing endogenous RNAs (ceRNAs), has been proposed to explain the complex relationships among mRNAs and lncRNAs by competing for binding with shared microRNAs (miRNAs). METHODS: We proposed an analysis framework to construct the association networks among lncRNA, mRNA, and miRNAs based on their expression patterns and decipher their network modules. RESULTS: We collected a large-scale gene expression dataset of 1,061 samples from breast invasive carcinoma (BRCA) patients, each consisted of the expression profiles of 4,359 lncRNAs, 16,517 mRNAs, and 534 miRNAs, and applied the proposed analysis approach to interrogate them. We have uncovered the underlying ceRNA modules and the key modulatory lncRNAs for different subtypes of breast cancer. CONCLUSIONS: We proposed a modulatory analysis to infer the ceRNA effects among mRNAs and lncRNAs and performed functional analysis to reveal the plausible mechanisms of lncRNA modulation in the four breast cancer subtypes. Our results might provide new directions for breast cancer therapeutics and the proposed method could be readily applied to other diseases.


Sujet(s)
Tumeurs du sein , microARN , ARN long non codant , Tumeurs du sein/génétique , Femelle , Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , Humains , microARN/génétique , microARN/métabolisme , ARN long non codant/génétique , ARN long non codant/métabolisme , ARN messager/génétique , ARN messager/métabolisme
11.
Sci Adv ; 8(5): eabl6496, 2022 02 04.
Article de Anglais | MEDLINE | ID: mdl-35119923

RÉSUMÉ

Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.


Sujet(s)
Dugong , Animaux , Bovins , Femelle , Mammifères , Souris , Phénotype
12.
BMC Genomics ; 22(1): 802, 2021 Nov 07.
Article de Anglais | MEDLINE | ID: mdl-34743696

RÉSUMÉ

BACKGROUND: RNA-seq emerges as a valuable method for clinical genetics. The transcriptome is "dynamic" and tissue-specific, but typically the probed tissues to analyze (TA) are different from the tissue of interest (TI) based on pathophysiology. RESULTS: We developed Phenotype-Tissue Expression and Exploration (PTEE), a tool to facilitate the decision about the most suitable TA for RNA-seq. We integrated phenotype-annotated genes, used 54 tissues from GTEx to perform correlation analyses and identify expressed genes and transcripts between TAs and TIs. We identified skeletal muscle as the most appropriate TA to inquire for cardiac arrhythmia genes and skin as a good proxy to study neurodevelopmental disorders. We also explored RNA-seq limitations and show that on-off switching of gene expression during ontogenesis or circadian rhythm can cause blind spots for RNA-seq-based analyses. CONCLUSIONS: PTEE aids the identification of tissues suitable for RNA-seq for a given pathology to increase the success rate of diagnosis and gene discovery. PTEE is freely available at https://bioinf.eva.mpg.de/PTEE/.


Sujet(s)
Analyse de profil d'expression de gènes , Transcriptome , Phénotype , RNA-Seq , Analyse de séquence d'ARN
13.
Front Genet ; 12: 702695, 2021.
Article de Anglais | MEDLINE | ID: mdl-34589114

RÉSUMÉ

MicroRNAs (miRNAs) are approximately 20-22 nucleotides in length, which are well known to participate in the post-transcriptional modification. The mature miRNAs were observed to be varied on 5' or 3' that raise another term-the isoforms of mature miRNAs (isomiRs), which have been proven not the artifacts and discussed widely recently. In our research, we focused on studying the 5' isomiRs in lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA). We characterized 75 isomiRs significantly associated with better prognosis and 43 isomiRs with poor prognosis. The 75 protective isomiRs can successfully distinguish tumors from normal samples and are expressed differently between patients of early and late stages. We also found that most of the protective isomiRs tend to be with downstream shift and upregulated compared with those with upstream shift, implying that a possible selection occurs during cancer development. Among these protective isomiRs, we observed a highly positive and significant correlation, as well as in harmful isomiRs, suggesting cooperation within the group. However, between protective and harmful, there is no such a concordance but conversely more negative correlation, suggesting the possible antagonistic effect between protective and harmful isomiRs. We also identified that two isomiRs miR-181a-3p|-3 and miR-181a-3p|2, respectively, belong to the harmful and protective groups, suggesting a bidirectional regulation of their originated archetype-miR-181a-3p. Additionally, we found that the protective isomiRs of miR-21-5p, which is an oncomiR, may be evolved as the tumor suppressors through producing isomiRs to hinder metastasis. In summary, these results displayed the characteristics of the protective isomiRs and their potential for developing the treatment of lung cancer.

14.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-33922264

RÉSUMÉ

The genes influencing cancer patient mortality have been studied by survival analysis for many years. However, most studies utilized them only to support their findings associated with patient prognosis: their roles in carcinogenesis have not yet been revealed. Herein, we applied an in silico approach, integrating the Cox regression model with effect size estimated by the Monte Carlo algorithm, to screen survival-influential genes in more than 6000 tumor samples across 16 cancer types. We observed that the survival-influential genes had cancer-dependent properties. Moreover, the functional modules formed by the harmful genes were consistently associated with cell cycle in 12 out of the 16 cancer types and pan-cancer, showing that dysregulation of the cell cycle could harm patient prognosis in cancer. The functional modules formed by the protective genes are more diverse in cancers; the most prevalent functions are relevant for immune response, implying that patients with different cancer types might develop different mechanisms against carcinogenesis. We also identified a harmful set of 10 genes, with potential as prognostic biomarkers in pan-cancer. Briefly, our results demonstrated that the survival-influential genes could reveal underlying mechanisms in carcinogenesis and might provide clues for developing therapeutic targets for cancers.


Sujet(s)
Marqueurs biologiques tumoraux/génétique , Carcinogenèse/anatomopathologie , Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , Tumeurs/mortalité , Transcriptome , Carcinogenèse/génétique , Carcinogenèse/métabolisme , Biologie informatique , Analyse de profil d'expression de gènes , Humains , Tumeurs/génétique , Tumeurs/anatomopathologie , Pronostic , Taux de survie
15.
Int J Obes (Lond) ; 45(3): 565-576, 2021 03.
Article de Anglais | MEDLINE | ID: mdl-33235355

RÉSUMÉ

BACKGROUND: Elucidation of lipid metabolism and accumulation mechanisms is of paramount importance to understanding obesity and unveiling therapeutic targets. In vitro cell models have been extensively used for these purposes, yet, they do not entirely reflect the in vivo setup. Conventional lipomas, characterized by the presence of mature adipocytes and increased adipogenesis, could overcome the drawbacks of cell cultures. Also, they have the unique advantage of easily accessible matched controls in the form of subcutaneous adipose tissue (SAT) from the same individual. We aimed to determine whether lipomas are a good model to understand lipid accumulation. METHODS: We histologically compared lipomas and control SAT, followed by assessment of the lipidome using high-resolution 1H NMR spectroscopy and ESI-IT mass spectrometry. RNA-sequencing was used to obtain the transcriptome of lipomas and the matched SAT. RESULTS: We found a significant increase of small-size (maximal axis < 70 µm) and very big (maximal axis > 150 µm) adipocytes within lipomas. This suggests both enhanced adipocyte proliferation and increased lipid accumulation. We further show that there is no significant change in the lipid composition compared to matched SAT. To better delineate the pathophysiology of lipid accumulation, we considered two groups with different genetic backgrounds: (1) lipomas with HMGA2 fusions and (2) without gene fusions. To reduce the search space for genes that are relevant for lipid pathophysiology, we focused on the overlapping differentially expressed (DE) genes between the two groups. Gene Ontology analysis revealed that DE genes are enriched in pathways related to lipid accumulation. CONCLUSIONS: We show that the common shared lipid accumulation mechanism in lipoma is a reduction in lipolysis, with most gene dysregulations leading to a reduced cAMP in the adipocyte. Superficial lipomas could thus be used as a model for lipid accumulation through altered lipolysis as found in obese patients.


Sujet(s)
Lipolyse/physiologie , Lipome , Modèles biologiques , Obésité/métabolisme , Adipocytes/cytologie , Adulte , Sujet âgé , Femelle , Humains , Métabolisme lipidique/génétique , Métabolisme lipidique/physiologie , Lipome/métabolisme , Lipome/physiopathologie , Mâle , Adulte d'âge moyen , Cartes d'interactions protéiques/génétique , Graisse sous-cutanée/métabolisme , Transcriptome/génétique
16.
Brief Bioinform ; 20(3): 976-984, 2019 05 21.
Article de Anglais | MEDLINE | ID: mdl-29194477

RÉSUMÉ

The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer.


Sujet(s)
Carcinogenèse/génétique , Réseaux de régulation génique , Humains , Tumeurs/génétique
17.
Oncotarget ; 7(36): 58022-58037, 2016 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-27517149

RÉSUMÉ

Despite of the discovery of protein therapeutic targets and advancement in multimodal therapy, the survival chance of high-risk neuroblastoma (NB) patients is still less than 50%. MYCN amplification is a potent driver of NB, which exerts its oncogenic activity through either activating or inhibiting the transcription of target genes. Recently, long noncoding RNAs (lncRNAs) are reported to be altered in cancers including NB. However, lncRNAs that are altered by MYCN amplification and associated with outcome in high-risk NB patients are limitedly discovered. Herein, we examined the expression profiles of lncRNAs and protein-coding genes between MYCN amplified and MYCN non-amplified NB from microarray (n = 47) and RNA-seq datasets (n = 493). We identified 6 lncRNAs in common that were differentially expressed (adjusted P ≤ 0.05 and fold change ≥ 2) and subsequently validated by RT-qPCR. The co-expression analysis reveals lncRNA, SNHG1 and coding gene, TAF1D highly co-expressed in NB. Kaplan-Meier analysis shows that higher expression of SNHG1 is significantly associated with poor patient survival. Importantly, multivariate analysis confirms high expression of SNHG1 as an independent prognostic marker for event-free survival (EFS) (HR = 1.58, P = 2.36E-02). In conclusion, our study unveils that SNHG1 is up-regulated by MYCN amplification and could be a potential prognostic biomarker for high-risk NB intervention.


Sujet(s)
Marqueurs biologiques tumoraux/génétique , Régulation de l'expression des gènes tumoraux , Protéine du proto-oncogène N-Myc/génétique , Neuroblastome/génétique , Neuroblastome/mortalité , ARN long non codant/génétique , Marqueurs biologiques tumoraux/métabolisme , Lignée cellulaire tumorale , Études de cohortes , Survie sans rechute , Femelle , Amplification de gène , Analyse de profil d'expression de gènes , Humains , Nourrisson , Estimation de Kaplan-Meier , Mâle , Protéine du proto-oncogène N-Myc/métabolisme , Stadification tumorale , Neuroblastome/anatomopathologie , Pronostic , ARN long non codant/métabolisme , Réaction de polymérisation en chaine en temps réel , Facteurs associés à la protéine de liaison à la boite TATA/métabolisme , Analyse sur puce à tissus , Régulation positive
18.
J Immunol ; 196(6): 2504-13, 2016 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-26851221

RÉSUMÉ

Dendritic cells (DCs) are specifically equipped with the G protein-coupled receptor 34 (GPR34). Tight regulation of GPR34 gene expression seems highly important for proper immunological functions, because the absence of this receptor leads to an alteration of the immune response, whereas overexpression was reported to be involved in neuroinflammation. However, the regulatory mechanism of GPR34 expression has not yet been investigated. Whole-transcriptome RNA sequencing analysis from spleens and DCs of GPR34 knockout and wild-type mice, combined with protein-protein interaction data, revealed functional modules affected by the absence of this receptor. Among these, NF-κB, MAPK, and apoptosis-signaling pathways showed high significance. Using murine DCs we experimentally show that NF-κB and MAPK pathways are involved in the downregulation of GPR34. DCs lacking GPR34 have a higher caspase-3/7 activity and increased apoptosis levels. Our study reveals a novel role of GPR34 in the fate of DCs and identifies a regulatory mechanism that could be relevant for treatment of GPR34-overexpressing pathologies, such as neuroinflammatory or cancer conditions.


Sujet(s)
Apoptose/immunologie , Cellules dendritiques/immunologie , Récepteurs aux lysophospholipides/immunologie , Animaux , Technique de Western , Cytométrie en flux , Régulation de l'expression des gènes/immunologie , Mâle , Souris , Souris de lignée C57BL , Souris knockout , RT-PCR
19.
Brief Bioinform ; 17(6): 996-1008, 2016 11.
Article de Anglais | MEDLINE | ID: mdl-26655252

RÉSUMÉ

Transcription factor and microRNA (miRNA) can mutually regulate each other and jointly regulate their shared target genes to form feed-forward loops (FFLs). While there are many studies of dysregulated FFLs in a specific cancer, a systematic investigation of dysregulated FFLs across multiple tumor types (pan-cancer FFLs) has not been performed yet. In this study, using The Cancer Genome Atlas data, we identified 26 pan-cancer FFLs, which were dysregulated in at least five tumor types. These pan-cancer FFLs could communicate with each other and form functionally consistent subnetworks, such as epithelial to mesenchymal transition-related subnetwork. Many proteins and miRNAs in each subnetwork belong to the same protein and miRNA family, respectively. Importantly, cancer-associated genes and drug targets were enriched in these pan-cancer FFLs, in which the genes and miRNAs also tended to be hubs and bottlenecks. Finally, we identified potential anticancer indications for existing drugs with novel mechanism of action. Collectively, this study highlights the potential of pan-cancer FFLs as a novel paradigm in elucidating pathogenesis of cancer and developing anticancer drugs.


Sujet(s)
Tumeurs , Transition épithélio-mésenchymateuse , Réseaux de régulation génique , Humains , microARN , Facteurs de transcription
20.
Mol Biosyst ; 11(12): 3244-52, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26448606

RÉSUMÉ

MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target gene expressions at the post-transcriptional level. Moreover, they have been reported as either oncomirs or tumor suppressors and possess therapeutic potential in cancer. In this study, we investigated differential co-expression of miRNAs across four cancer types. We observed that the loss of positive co-expressions among miRNAs frequently occurs in the studied cancer types. This observation suggests that the disruption of positive co-expressions among miRNAs may be prevalent during tumorigenesis. By systematically collecting these lost positive co-expressions among miRNAs in cancer, we constructed a cross-cancer miRNA differential co-expression network. We observed that the influential miRNAs in the proposed network, i.e., hubs or in larger cliques, tended to be involved in more cancer types than other miRNAs. Moreover, we found that miRNAs which lose their positive co-expressions in cancers might co-contribute to cancer development, and even could be used to predict the cancer types in which miRNAs were involved. Finally, we identified two potential miRNA-regulated onco-modules, mitosis and DNA replication, that are associated with poor survival outcomes in patients across multiple cancers. Collectively, our study suggested that the disruption of miRNA positive co-expression in cancer might contribute to cancer development. Our findings also form an important basis for identifying miRNAs with potential co-contribution to carcinogenesis.


Sujet(s)
Transformation cellulaire néoplasique/génétique , Régulation de l'expression des gènes tumoraux , Réseaux de régulation génique , microARN/génétique , Modèles biologiques , Tumeurs/génétique , Analyse de profil d'expression de gènes , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE