Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Am Chem Soc ; 146(27): 18241-18252, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38815248

RÉSUMÉ

Aberrant DNA repair is a hallmark of cancer, and many tumors display reduced DNA repair capacities that sensitize them to genotoxins. Here, we demonstrate that the differential DNA repair capacities of healthy and transformed tissue may be exploited to obtain highly selective chemotherapies. We show that the novel N3-(2-fluoroethyl)imidazotetrazine "KL-50" is a selective toxin toward tumors that lack the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT), which reverses the formation of O6-alkylguanine lesions. We establish that KL-50 generates DNA interstrand cross-links (ICLs) by a multistep process comprising DNA alkylation to generate an O6-(2-fluoroethyl)guanine (O6FEtG) lesion, slow unimolecular displacement of fluoride to form an N1,O6-ethanoguanine (N1,O6EtG) intermediate, and ring-opening by the adjacent cytidine. The slow rate of N1,O6EtG formation allows healthy cells expressing MGMT to reverse the initial O6FEtG lesion before it evolves to N1,O6EtG, thereby suppressing the formation of toxic DNA-MGMT cross-links and reducing the amount of DNA ICLs generated in healthy cells. In contrast, O6-(2-chloroethyl)guanine lesions produced by agents such as lomustine and the N3-(2-chloroethyl)imidazotetrazine mitozolomide rapidly evolve to N1,O6EtG, resulting in the formation of DNA-MGMT cross-links and DNA ICLs in healthy tissue. These studies suggest that careful consideration of the rates of chemical DNA modification and biochemical DNA repair may lead to the identification of other tumor-specific genotoxic agents.


Sujet(s)
Tumeurs du cerveau , Résistance aux médicaments antinéoplasiques , Humains , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/anatomopathologie , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/synthèse chimique , Antinéoplasiques/usage thérapeutique , Lignée cellulaire tumorale , Réparation de l'ADN/effets des médicaments et des substances chimiques , O(6)-methylguanine-DNA methyltransferase/métabolisme , O(6)-methylguanine-DNA methyltransferase/antagonistes et inhibiteurs , Imidazoles/composition chimique , Imidazoles/pharmacologie , Imidazoles/usage thérapeutique
2.
Science ; 377(6605): 502-511, 2022 07 29.
Article de Anglais | MEDLINE | ID: mdl-35901163

RÉSUMÉ

Approximately half of glioblastoma and more than two-thirds of grade II and III glioma tumors lack the DNA repair protein O6-methylguanine methyl transferase (MGMT). MGMT-deficient tumors respond initially to the DNA methylation agent temozolomide (TMZ) but frequently acquire resistance through loss of the mismatch repair (MMR) pathway. We report the development of agents that overcome this resistance mechanism by inducing MMR-independent cell killing selectively in MGMT-silenced tumors. These agents deposit a dynamic DNA lesion that can be reversed by MGMT but slowly evolves into an interstrand cross-link in MGMT-deficient settings, resulting in MMR-independent cell death with low toxicity in vitro and in vivo. This discovery may lead to new treatments for gliomas and may represent a new paradigm for designing chemotherapeutics that exploit specific DNA repair defects.


Sujet(s)
Antinéoplasiques alcoylants , Tumeurs du cerveau , DNA modification methylases , Enzymes de réparation de l'ADN , Conception de médicament , Résistance aux médicaments antinéoplasiques , Glioblastome , Protéines suppresseurs de tumeurs , Antinéoplasiques alcoylants/composition chimique , Antinéoplasiques alcoylants/pharmacologie , Antinéoplasiques alcoylants/usage thérapeutique , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/génétique , Lignée cellulaire tumorale , Méthylation de l'ADN/génétique , DNA modification methylases/génétique , Réparation de l'ADN/génétique , Enzymes de réparation de l'ADN/génétique , Dacarbazine/pharmacologie , Dacarbazine/usage thérapeutique , Résistance aux médicaments antinéoplasiques/génétique , Glioblastome/traitement médicamenteux , Glioblastome/génétique , Humains , Témozolomide/pharmacologie , Témozolomide/usage thérapeutique , Protéines suppresseurs de tumeurs/génétique
4.
ACS Catal ; 7(8): 5129-5133, 2017 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-28804677

RÉSUMÉ

The chemoselective functionalization of polyfunctional aryl linchpins is crucial for rapid diversification. Although well-explored for Csp2 and Csp nucleophiles, the chemoselective introduction of Csp3 groups remains notoriously difficult and is virtually undocumented using Ni catalysts. To fill this methodological gap, a "haloselective" cross-coupling process of arenes bearing two halogens, I and Br, using ammonium alkylbis(catecholato)silicates, has been developed. Utilizing Ni/photoredox dual catalysis, Csp3 -Csp2 bonds can be forged selectively at the iodine-bearing carbon of bromo(iodo)arenes. The described high-yielding, base-free strategy accommodates various protic functional groups. Selective electrophile activation enables installation of a second Csp3 center and can be done without the need for purification of the intermediate monoalkylated product.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE