Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 6477, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39090085

RÉSUMÉ

Protein-protein interactions (PPIs) stabilization with molecular glues plays a crucial role in drug discovery, albeit with significant challenges. In this study, we propose a dual-site approach, targeting the PPI region and its dynamic surroundings. We conduct molecular dynamics simulations to identify critical sites on the PPI that stabilize the cyclin-dependent kinase 12 - DNA damage-binding protein 1 (CDK12-DDB1) complex, resulting in further cyclin K degradation. This exploration leads to the creation of LL-K12-18, a dual-site molecular glue, which enhances the glue properties to augment degradation kinetics and efficiency. Notably, LL-K12-18 demonstrates strong inhibition of gene transcription and anti-proliferative effects in tumor cells, showing significant potency improvements in MDA-MB-231 (88-fold) and MDA-MB-468 cells (307-fold) when compared to its precursor compound SR-4835. These findings underscore the potential of dual-site approaches in disrupting CDK12 function and offer a structural insight-based framework for the design of cyclin K molecular glues.


Sujet(s)
Kinases cyclines-dépendantes , Liaison aux protéines , Humains , Lignée cellulaire tumorale , Prolifération cellulaire , Kinases cyclines-dépendantes/métabolisme , Cyclines , Protéines de liaison à l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Simulation de dynamique moléculaire
2.
Med Chem ; 18(3): 353-363, 2022.
Article de Anglais | MEDLINE | ID: mdl-34097593

RÉSUMÉ

BACKGROUND: Pteridine-based scaffolds have been widely prevalent in pharmaceuticals, such as kinase inhibitors targeting EGFR, FLT3 and PI3K/mTOR which are attractive targets for the anticancer therapy. OBJECTIVE: This work aimed at designing and synthesizing 6-2,2,2-trifluoroethoxy functionalized pteridine-based derivatives for investigation of their anti-cancer activities as EGFR inhibitor. METHODS: Pteridine-based derivatives were synthesized in 6 steps involving amination, bromination, cyclization, alkoxylation, chlorination and coupling reactions. Cellular anti-proliferative activities and inhibition activities on EGFR signaling of these pteridine derivatives in vitro were determined by the MTT assay and western blot analysis, respectively. Molecular docking simulation studies were carried out by the crystallographic structure of the erlotinib/EGFR kinase domain [Protein Data Bank (PDB) code: 1M17]. RESULTS: The compound 7m, with IC50 values of 27.40 µM on A549 cell line, exhibited comparable anti-proliferative activity relative to the positive control. Besides, western blots showed its obvious down-regulation of p-EGFR and p-ERK expression at 0.8 µM. The molecular docking model displayed a hydrogen bond between Met-769 amide nitrogen and N-1 in pteridine motif of 7m which lied at the ATP binding site of EGFR kinase domain. CONCLUSION: The inhibition of 7m on cellular growth was comparable to that of the positive control. The inhibitory activities of 7m on EGFR phosphorylation and ERK phosphorylation in A549 cell line were relatively superior to that of the positive control. Both results suggested that the antiproliferative activity of 7m against A549 cell line was caused by inhibition of EGFR signaling pathway, providing a new perspective for the modification of pteridine-based derivatives as EGFR inhibitor.


Sujet(s)
Antinéoplasiques , Ptéridines , Antinéoplasiques/composition chimique , Apoptose , Lignée cellulaire tumorale , Prolifération cellulaire , Tests de criblage d'agents antitumoraux , Récepteurs ErbB , Simulation de docking moléculaire , Structure moléculaire , Inhibiteurs de protéines kinases/composition chimique , Ptéridines/pharmacologie , Relation structure-activité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE