Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biochem Biophys Res Commun ; 667: 153-161, 2023 07 30.
Article de Anglais | MEDLINE | ID: mdl-37229824

RÉSUMÉ

Quantum dots (QDs) containing zinc (Zn) and tellurium (Te) have low toxicity and excellent optoelectronic properties, which make them ideal fluorescent probes for use in environmental monitoring. However, their size/shape distribution synthesized by existing methods is not as good as that of other nanoparticles, thus limiting their application. Exploring whether this kind of QD can be biosynthesized and whether it can act as a nanoprobe are favorable attempts to expand the synthesis method and the application of QDs. Telluride QDs were biosynthesized in Escherichia coli cells. The nanoparticles were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma-atomic emission spectrometry (ICP‒AES), indicating that they were Zn3STe2 QDs. The QDs were monodispersed, spherical and fluorescently stable, with a uniform particle size of 3.05 ± 0.48 nm. The biosynthesis conditions of the QDs, including substrate concentrations and their process time, were optimized respectively. It was verified that the cysE and cysK genes were involved in the biosynthesis of telluride QDs. The biosynthesis ability of the QDs was improved by knocking out the tehB gene and overexpressing the pckA gene. Escherichia coli BW25113 cells that synthesized Zn3STe2 QDs were used as environmentally friendly fluorescent bioprobes to specifically select and quantitatively detect Fe3+ in water with a low limit of detection (2.62 µM). The fluorescent cells were also photobleach resistant and had good fluorescence stability. This study expands on the synthesis method of telluride QDs and the application of fluorescent probes.


Sujet(s)
Nanoparticules , Boîtes quantiques , Boîtes quantiques/composition chimique , Eau/composition chimique , Colorants fluorescents/composition chimique , Escherichia coli/génétique , Nanoparticules/composition chimique
2.
Microbiol Spectr ; 11(3): e0132623, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37098949

RÉSUMÉ

Selenium (Se) is a micronutrient in most eukaryotes, and Se-enriched yeast is the most common selenium supplement. However, selenium metabolism and transport in yeast have remained unclear, greatly hindering the application of this element. To explore the latent selenium transport and metabolism mechanisms, we performed adaptive laboratory evolution under the selective pressure of sodium selenite and successfully obtained selenium-tolerant yeast strains. Mutations in the sulfite transporter gene ssu1 and its transcription factor gene fzf1 were found to be responsible for the tolerance generated in the evolved strains, and the selenium efflux process mediated by ssu1 was identified in this study. Moreover, we found that selenite is a competitive substrate for sulfite during the efflux process mediated by ssu1, and the expression of ssu1 is induced by selenite rather than sulfite. Based on the deletion of ssu1, we increased the intracellular selenomethionine content in Se-enriched yeast. This work confirms the existence of the selenium efflux process, and our findings may benefit the optimization of Se-enriched yeast production in the future. IMPORTANCE Selenium is an essential micronutrient for mammals, and its deficiency severely threatens human health. Yeast is the model organism for studying the biological role of selenium, and Se-enriched yeast is the most popular selenium supplement to solve Se deficiency. The cognition of selenium accumulation in yeast always focuses on the reduction process. Little is known about selenium transport, especially selenium efflux, which may play a crucial part in selenium metabolism. The significance of our research is in determining the selenium efflux process in Saccharomyces cerevisiae, which will greatly enhance our knowledge of selenium tolerance and transport, facilitating the production of Se-enriched yeast. Moreover, our research further advances the understanding of the relationship between selenium and sulfur in transport.


Sujet(s)
Saccharomyces cerevisiae , Sélénium , Humains , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Sélénium/métabolisme , Sélénium/pharmacologie , Sélénométhionine/métabolisme , Sulfites/métabolisme , Acide sélénieux/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...