Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 49
Filtrer
1.
J Am Heart Assoc ; 13(5): e032694, 2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38420758

RÉSUMÉ

BACKGROUND: Delayed cerebral ischemia represents a significant contributor to death and disability following aneurysmal subarachnoid hemorrhage. Although preclinical models have shown promising results, clinical trials have consistently failed to replicate the success of therapeutic strategies. The lack of standardized experimental setups and outcome assessments, particularly regarding secondary vasospastic/ischemic events, may be partly responsible for the translational failure. The study aims to delineate the procedural characteristics and assessment modalities of secondary vasospastic and ischemic events, serving as surrogates for clinically relevant delayed cerebral ischemia, in recent rat and murine subarachnoid hemorrhage models. METHODS AND RESULTS: We conducted a systematic review of rat and murine in vivo subarachnoid hemorrhage studies (published: 2016-2020) using delayed cerebral ischemia/vasospasm as outcome parameters. Our analysis included 102 eligible studies. In murine studies (n=30), the endovascular perforation model was predominantly used, while rat studies primarily employed intracisternal blood injection to mimic subarachnoid hemorrhage. Particularly, the injection models exhibited considerable variation in injection volume, rate, and cerebrospinal fluid withdrawal. Peri-interventional monitoring was generally inadequately reported across all models, with body temperature and blood pressure being the most frequently documented parameters (62% and 34%, respectively). Vasospastic events were mainly assessed through microscopy of large cerebral arteries. In 90% of the rat and 86% of the murine studies, only male animals were used. CONCLUSIONS: Our study underscores the substantial heterogeneity in procedural characteristics and outcome assessments of experimental subarachnoid hemorrhage research. To address these challenges, drafting guidelines for standardization and ensuring rigorous control of methodological and experimental quality by funders and journals are essential. REGISTRATION: URL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42022337279.


Sujet(s)
Encéphalopathie ischémique , Hémorragie meningée , Vasospasme intracrânien , Animaux , Mâle , Souris , Rats , Pression sanguine , Encéphalopathie ischémique/complications , Infarctus cérébral , Hémorragie meningée/complications , Hémorragie meningée/thérapie , Vasospasme intracrânien/complications
2.
Front Cell Neurosci ; 17: 1115385, 2023.
Article de Anglais | MEDLINE | ID: mdl-37502465

RÉSUMÉ

Introduction: Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods: Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results: Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion: By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.

3.
Front Mol Neurosci ; 16: 1116841, 2023.
Article de Anglais | MEDLINE | ID: mdl-37033376

RÉSUMÉ

Many recent research projects have described typical chronic changes in the retinal vasculature for diverse neurovascular and neurodegenerative disorders such as stroke or Alzheimer's disease. Unlike cerebral vasculature, retinal blood vessels can be assessed non-invasively by retinal vessel analysis. To date, there is only a little information about potential simultaneous reactions of retinal and cerebral vessels in acute neurovascular diseases. The field of applications of retinal assessment could significantly be widened if more information about potential correlations between those two vascular beds and the feasibility of non-invasive retinal vessel analysis in acute neurovascular disease were available. Here, we present our protocol for the simultaneous assessment of retinal and cerebral vessels in an acute setting in anesthetized rats using a non-invasive retinal vessel analyzer and a superficial tissue imaging system for laser speckle contrast analysis via a closed bone window. We describe the experimental set-up in detail, outline the pitfalls of repeated retinal vessel analyses in an experimental set-up of several hours, and address issues that arise from the simultaneous use of two different assessment tools. Finally, we demonstrate the robustness and variability of the reactivity of retinal vessels to hypercapnia at baseline as well as their reproducibility over time using two anesthetic protocols common for neurovascular research. In summary, the procedures described in this protocol allow us to directly compare retinal and cerebral vascular beds and help to substantiate the role of the retina as a "window to the brain."

4.
Eur Surg Res ; 64(1): 120-138, 2023.
Article de Anglais | MEDLINE | ID: mdl-35385845

RÉSUMÉ

INTRODUCTION: Animal models for preclinical research of subarachnoid hemorrhage (SAH) are widely used as much of the pathophysiology remains unknown. However, the burden of these models inflicted on the animals is not well characterized. The European directive requires severity assessment-based allocation to categories. Up to now, the classification into predefined categories is rather subjective and often without underlying scientific knowledge. We therefore aimed at assessing the burden of rats after SAH or the corresponding sham surgery to provide a scientific assessment. METHODS: We performed a multimodal approach, using different behavior tests, clinical and neurological scoring, and biochemical markers using the common model for SAH of intracranial endovascular filament perforation in male Wistar rats. Up to 7 days after surgery, animals with SAH were compared to sham surgery and to a group receiving only anesthesia and analgesia. RESULTS: Sham surgery (n = 15) and SAH (n = 16) animals showed an increase in the clinical score the first days after surgery, indicating clinical deterioration, while animals receiving only anesthesia without surgery (n = 5) remained unaffected. Body weight loss occurred in all groups but was more pronounced and statistically significant only after surgery. The analysis of burrowing, open field (total distance, erections), balance beam, and neuroscore showed primarily an effect of the surgery itself in sham surgery and SAH animals. Only concerning balance beam and neuroscore, a difference was visible between sham surgery and SAH. The outcome of the analysis of systemic and local inflammatory parameters and of corticosterone in blood and its metabolites in feces was only robust in animals suffering from larger bleedings. Application of principal component analysis resulted in a clear separation of sham surgery and SAH animals from their respective baseline as well as from the anesthesia-only group at days 1 and 3, with the difference between sham surgery and SAH being not significant. DISCUSSION/CONCLUSION: To our knowledge, we are the first to publish detailed clinical score sheet data combined with advanced behavioral assessment in the endovascular perforation model for SAH in rats. The tests chosen here clearly depict an impairment of the animals within the first days after surgery and are consequently well suited for assessment of the animals' suffering in the model. A definitive classification into one of the severity categories named by the EU directive is yet pending and has to be performed in the future by including the assessment data from different neurological and nonneurological disease models.


Sujet(s)
Hémorragie meningée , Rats , Mâle , Animaux , Rat Wistar , Modèles animaux de maladie humaine
5.
Front Neurol ; 13: 834003, 2022.
Article de Anglais | MEDLINE | ID: mdl-35707032

RÉSUMÉ

The translation of preclinical stroke research into successful human clinical trials remains a challenging task. The first Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for preclinical research and several other guidelines were published to address these challenges. Most guidelines recommend the use of physiological monitoring to detect the occurrence of undesired pathologies such as subarachnoid hemorrhage and to limit the variability of the infarct volume and-therefore-homogenize the experimental result for complete reporting particularly with respect to transparency and methodological rigor. From the years 2009 and 2019, 100 published articles each using a rat stroke model were analyzed to quantify parameters related to anesthesia, physiological monitoring, stroke model type, ischemia verification, and overall study quality over time. No significant difference in the frequency of cerebral blood flow (CBF) measurements over time (28/34% for 2009/2019) was found. Notably, significantly fewer studies reported temperature, blood pressure, and blood gas monitoring data in 2019 compared to 2009. On the other hand, an increase in general study quality parameters (e.g., randomization, reporting of approval) was seen. In conclusion, the frequency of periinterventional monitoring has decreased over time. Some general methodological quality aspects, however, partially have increased. CBF measurement-the gold standard for ischemia verification-was applied rarely. Despite the growing recognition of current guidelines such as STAIR and ARRIVE (both widely approved in 2019) reporting, methods and procedures mostly do not follow these guidelines. These deficits may contribute to the translational failure of preclinical stroke research in search for neuroprotective therapies.

6.
Biology (Basel) ; 11(2)2022 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-35205025

RÉSUMÉ

Argon has shown neuroprotective effects after traumatic brain injury (TBI) and cerebral ischemia in vitro and in focal cerebral ischemia in vivo. The purpose of this study is to show whether argon beneficially impacts brain contusion volume (BCV) as the primary outcome parameter, as well as secondary outcome parameters, such as brain edema, intracranial pressure (ICP), neurological outcome, and cerebral blood flow (CBF) in an in-vivo model. Subjects were randomly assigned to either argon treatment or room air. After applying controlled cortical impact (CCI) onto the dura with 8 m/s (displacement 1 mm, impact duration 150 ms), treatment was administered by a recovery chamber with 25%, 50%, or 75% argon and the rest being oxygen for 4 h after trauma. Two control groups received room air for 15 min and 24 h, respectively. Neurological testing and ICP measurements were performed 24 h after trauma, and brains were removed to measure secondary brain damage. The primary outcome parameter, BCV, and the secondary outcome parameter, brain edema, were not significantly reduced by argon treatment at any concentration. There was a highly significant decrease in ICP at 50% argon (p = 0.001), and significant neurological improvement (beamwalk missteps) at 25% and 50% argon (p = 0.01; p = 0.049 respectively) compared to control.

7.
Lab Anim ; 56(4): 356-369, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35144494

RÉSUMÉ

In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.


Sujet(s)
Comportement animal , Tumeurs , Animaux , Modèles animaux de maladie humaine , Humains , Mâle , Souris , Oxidopamine/effets indésirables , Rats , Rat Sprague-Dawley , Rat Wistar
8.
Front Neurol ; 12: 659890, 2021.
Article de Anglais | MEDLINE | ID: mdl-33927686

RÉSUMÉ

Objective: Metabolic demand increases with neuronal activity and adequate energy supply is ensured by neurovascular coupling (NVC). Impairments of NVC have been reported in the context of several diseases and may correlate with disease severity and outcome. Voltage-gated Ca2+-channels (VGCCs) are involved in the regulation of vasomotor tone. In the present study, we compared arterial and venous responses to flicker stimulation in Cav2.3-competent (Cav2.3[+/+]) and -deficient (Cav2.3[-/-]) mice using retinal vessel analysis. Methods: The mice were anesthetized and the pupil of one eye was dilated by application of a mydriaticum. An adapted prototype of retinal vessel analyzer was used to perform dynamic retinal vessel analysis. Arterial and venous responses were quantified in terms of the area under the curve (AUCart/AUCven) during flicker application, mean maximum dilation (mMDart/mMDven) and time to maximum dilation (tMDart/tMDven) during the flicker, dilation at flicker cessation (DFCart/DFCven), mean maximum constriction (mMCart/mMCven), time to maximum constriction (tMCart/tMCven) after the flicker and reactive magnitude (RMart/RMven). Results: A total of 33 retinal scans were conducted in 22 Cav2.3[+/+] and 11 Cav2.3[-/-] mice. Cav2.3[-/-] mice were characterized by attenuated and partially reversed arterial and venous responses, as reflected in significantly lower AUCart (p = 0.031) and AUCven (p = 0.047), a trend toward reduced DFCart (p = 0.100), DFCven (p = 0.100), mMDven (p = 0.075), and RMart (p = 0.090) and a trend toward increased tMDart (p = 0.096). Conclusion: To our knowledge, this is the first study using a novel, non-invasive analysis technique to document impairment of retinal vessel responses in VGCC-deficient mice. We propose that Cav2.3 channels could be involved in NVC and may contribute to the impairment of vasomotor responses under pathophysiological conditions.

9.
Front Neurol ; 12: 757050, 2021.
Article de Anglais | MEDLINE | ID: mdl-35095718

RÉSUMÉ

Objective: Impaired cerebral blood flow (CBF) regulation, such as reduced reactivity to hypercapnia, contributes to the pathophysiology after aneurysmal subarachnoid hemorrhage (SAH), but temporal dynamics in the acute phase are unknown. Featuring comparable molecular regulation mechanisms, the retinal vessels participate in chronic and subacute stroke- and SAH-associated vessel alterations in patients and can be studied non-invasively. This study is aimed to characterize the temporal course of the cerebral and retinal vascular reactivity to hypercapnia in the acute phase after experimental SAH and compare the potential degree of impairment. Methods: Subarachnoid hemorrhage was induced by injecting 0.5 ml of heparinized autologous blood into the cisterna magna of male Wistar rats using two anesthesia protocols [isoflurane/fentanyl n = 25 (Sham + SAH): Iso-Group, ketamine/xylazine n = 32 (Sham + SAH): K/X-Group]. CBF (laser speckle contrast analysis) and physiological parameters were measured continuously for 6 h. At six predefined time points, hypercapnia was induced by hypoventilation controlled via blood gas analysis, and retinal vessel diameter (RVD) was determined non-invasively. Results: Cerebral reactivity and retinal reactivity in Sham groups were stable with only a slight attenuation after 2 h in RVD of the K/X-Group. In the SAH Iso-Group, cerebral and retinal CO2 reactivity compared to baseline was immediately impaired starting at 30 min after SAH (CBF p = 0.0090, RVD p = 0.0135) and lasting up to 4 h (p = 0.0136, resp. p = 0.0263). Similarly, in the K/X-Group, cerebral CO2 reactivity was disturbed early after SAH (30 min, p = 0.003) albeit showing a recovery to baseline after 2 h while retinal CO2 reactivity was impaired over the whole observation period (360 min, p = 0.0001) in the K/X-Group. After normalization to baseline, both vascular beds showed a parallel behavior regarding the temporal course and extent of impairment. Conclusion: This study provides a detailed temporal analysis of impaired cerebral vascular CO2 reactivity starting immediately after SAH and lasting up to 6 h. Importantly, the retinal vessels participate in these acute changes underscoring the promising role of the retina as a potential non-invasive screening tool after SAH. Further studies will be required to determine the correlation with functional outcomes.

10.
Int J Mol Sci ; 21(23)2020 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-33255506

RÉSUMÉ

Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs-nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)-might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.


Sujet(s)
Canaux ioniques sensibles à l'acidité/génétique , Amiloride/pharmacologie , Encéphalopathie ischémique/traitement médicamenteux , Canaux calciques de type L/génétique , Nimodipine/pharmacologie , Canaux ioniques sensibles à l'acidité/métabolisme , Canaux ioniques sensibles à l'acidité/pharmacologie , Amiloride/effets indésirables , Animaux , Encéphalopathie ischémique/métabolisme , Encéphalopathie ischémique/anatomopathologie , Canaux calciques de type L/effets des médicaments et des substances chimiques , Canaux calciques de type L/métabolisme , Cellules cultivées , Glucose/métabolisme , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Humains , Souris , Neurones/effets des médicaments et des substances chimiques , Neurones/métabolisme , Neuroprotecteurs/effets indésirables , Neuroprotecteurs/pharmacologie , Nimodipine/effets indésirables , Oxygène/métabolisme
11.
J Biomed Opt ; 24(7): 1-11, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-31286726

RÉSUMÉ

To refine animal research, vital signs, activity, stress, and pain must be monitored. In chronic studies, some measures can be assessed using telemetry sensors. Although this methodology provides high-precision data, an initial surgery for device implantation is necessary, potentially leading to stress, wound infections, and restriction of motion. Recently, camera systems have been adapted for animal research. We give an overview of parameters that can be assessed using imaging in the visible, near-infrared, and thermal spectrum of light. It focuses on heart activity, respiration, oxygen saturation, and motion, as well as on wound analysis. For each parameter, we offer recommendations on the minimum technical requirements of appropriate systems, regions of interest, and light conditions, among others. In general, these systems demonstrate great performance. For heart and respiratory rate, the error was <4 beats / min and 5 breaths/min. Furthermore, the systems are capable of tracking animals during different behavioral tasks. Finally, studies indicate that inhomogeneous temperature distribution around wounds might be an indicator of (pending) infections. In sum, camera-based techniques have several applications in animal research. As vital parameters are currently only assessed in sedated animals, the next step should be the integration of these modalities in home-cage monitoring.


Sujet(s)
Monitorage physiologique , Imagerie optique , Enregistrement sur magnétoscope , Animaux , Rythme cardiaque/physiologie , Sciences des animaux de laboratoire , Souris , Mouvement/physiologie , Oxygène/sang , Rats , Thermographie , Cicatrisation de plaie/physiologie
12.
PLoS One ; 14(7): e0220467, 2019.
Article de Anglais | MEDLINE | ID: mdl-31361786

RÉSUMÉ

Many details of the pathophysiology of subarachnoid haemorrhage (SAH) still remain unknown, making animal experiments an indispensable tool for assessment of diagnostics and therapy. For animal protection and project authorization, one needs objective measures to evaluate the severity and burden in each model. Corticosterone is described as a sensitive stress parameter reflecting the acute burden, and inflammatory markers can be used for assessment of the extent of the brain lesion. However, the brain lesion itself may activate the hypothalamic-pituitary-adrenal-axis early after SAH, as shown for ischemic stroke, probably interfering with early inflammatory processes, thus complicating the assessment of severity and burden on the basis of corticosterone and inflammation. To assess the suitability of these markers in SAH, we evaluated the courses of corticosterone, IL-6 and TNF-α up to 6h in an acute model simulating SAH in continuously anaesthetized rats, lacking the pain and stress induced impact on these parameters. Animals were randomly allocated to sham or SAH. SAH was induced by cisterna magna blood-injection, and intracranial pressure and cerebral blood flow were measured under continuous isoflurane/fentanyl anaesthesia. Withdrawn at predetermined time points, blood was analysed by commercial ELISA kits. After 6h the brain was removed for western blot analysis of IL-6 and TNF-α. Serum corticosterone levels were low with no significant difference between sham and SAH. No activation of the HPA-axis was detectable, rendering corticosterone a potentially useful parameter for stress assessment in future chronic studies. Blood IL-6 and TNF-α increased in both groups over time, with IL-6 increasing significantly more in SAH compared to sham towards the end of the observation period. In the basal cortex, IL-6 and TNF-α increased only in SAH. The pro-inflammatory response seems to start locally in the brain, reflected by an increase in peripheral blood. An additional surgery-induced systemic inflammatory response should be considered.


Sujet(s)
Corticostérone/métabolisme , Médiateurs de l'inflammation/métabolisme , Inflammation/anatomopathologie , Indice de gravité de la maladie , Hémorragie meningée/physiopathologie , Animaux , Inflammation/métabolisme , Mâle , Rats , Rat Wistar , Appréciation des risques
13.
J Biophotonics ; 12(9): e201800408, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-30983133

RÉSUMÉ

Aneurysmal subarachnoid hemorrhage (aSAH) is a severe medical condition associated with a significant cause of mortality throughout the world. Cisterna magna injection model is accepted widely to mimic clinical aSAH and is performed on small animal models to study aSAH during neurosurgery. Coherent light scattered from the surface of the rat brain is used to infer information about the variations in blood flow during this condition. We obtained speckle images from the exposed cortex during the entire experiment using an external tissue imaging system. Contrast and fractal analyses are carried out for the recorded speckle pattern time series. Correlation analysis based on Hurst exponent for these images is found to be a more sensitive tool in studying aSAH as compared to routinely used laser speckle contrast analysis for assessing the changes in blood flow velocity. Additionally, our studies provide improved blood flow detection sensitivity with image Hurst exponent in combination with computed fractal dimension, during an event of aSAH.


Sujet(s)
Encéphale/imagerie diagnostique , Hémodynamique , Procédures de neurochirurgie , Hémorragie meningée/imagerie diagnostique , Animaux , Encéphalopathie ischémique , Fractales , Lasers , Lumière , Mâle , Rats , Rat Wistar
14.
Transl Stroke Res ; 10(5): 566-582, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-30443885

RÉSUMÉ

Clinical presentation and neurological outcome in subarachnoid hemorrhage (SAH) is highly variable. Aneurysmal SAH (aSAH) is hallmarked by sudden increase of intracranial pressure (ICP) and acute hypoperfusion contributing to early brain injury (EBI) and worse outcome, while milder or non-aneurysmal SAH with comparable amount of blood are associated with better neurological outcome, possibly due to less dramatic changes in ICP. Acute pressure dynamics may therefore be an important pathophysiological aspect determining neurological complications and outcome. We investigated the influence of ICP variability on acute changes after SAH by modulating injection velocity and composition in an experimental model of SAH. Five hundred microliters of arterial blood (AB) or normal saline (NS) were injected intracisternally over 1 (AB1, NS1), 10 (AB10, NS10), or 30 min (AB30) with monitoring for 6 h (n = 68). Rapid blood injection resulted in highest ICP peaks (AB1 median 142.7 mmHg [1.Q 116.7-3.Q 230.6], AB30 33.42 mmHg [18.8-38.3], p < 0.001) and most severe hypoperfusion (AB1 16.6% [11.3-30.6], AB30 44.2% [34.8-59.8]; p < 0.05). However, after 30 min, all blood groups showed comparable ICP elevation and prolonged hypoperfusion. Cerebral autoregulation was disrupted initially due to the immediate ICP increase in all groups except NS10; only AB1, however, resulted in sustained impairment of autoregulation, as well as early neuronal cell loss. Rapidity and composition of hemorrhage resulted in characteristic hyperacute hemodynamic changes, with comparable hypoperfusion despite different ICP ranges. Only rapid ICP increase was associated with pronounced and early, but sustained disruption of cerebral autoregulation, possibly contributing to EBI.


Sujet(s)
Circulation cérébrovasculaire/physiologie , Homéostasie/physiologie , Pression intracrânienne/physiologie , Hémorragie meningée/physiopathologie , Animaux , Pression artérielle , Modèles animaux de maladie humaine , Mâle , Rat Wistar
15.
PLoS One ; 13(10): e0204689, 2018.
Article de Anglais | MEDLINE | ID: mdl-30286110

RÉSUMÉ

BACKGROUND: Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. METHODS: A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. RESULTS: A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). CONCLUSIONS: To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.


Sujet(s)
Couplage neurovasculaire/physiologie , Rétine/physiologie , Vaisseaux rétiniens/physiologie , Animaux , Électrorétinographie/méthodes , Lumière , Mâle , Souris , Souris de lignée C57BL , Stimulation lumineuse/méthodes
16.
Sci Rep ; 8(1): 745, 2018 01 15.
Article de Anglais | MEDLINE | ID: mdl-29335483

RÉSUMÉ

After reperfusion therapy in stroke patients secondary inflammatory processes may increase cerebral damage. In this pilot study, effects of anti-inflammatory therapy were assessed in a middle cerebral artery occlusion (MCAO) mouse model after reperfusion. 1 hour after MCAO, the artery was reopened and tacrolimus or NaCl were administered intra-arterially. Perfusion-weighted (PWI) and diffusion-weighted images (DWI) were obtained by MRI during MCAO. DWI, T2- and T1-weighted images with and without Bis-5HT-DTPA administration were obtained 24 hours after MCAO. Neutrophils, Myeloperoxidase-positive-(MPO+)-cells and microglia, including M1 and M2 phenotypes, were assessed immunohistochemically. Treatment with tacrolimus led to significantly smaller apparent diffusion coefficient (ADC) lesion volume within 24 hours (median -55.6mm3, range -81.3 to -3.6, vs. median 8.0 mm3, range 1.2 to 41.0; P = 0.008) and significantly lower enhancement of Bis-5-HT-DTPA (median signal intensity (SI) ratiocortex, median 92.0%, range 82.8% to 97.1%, vs. median 103.1%, range 98.7% to 104.6%; P = 0.008) compared to the NaCl group. Immunohistochemical analysis showed no significant differences between both groups. Intra-arterially administered anti-inflammatory agents after mechanical thrombectomy may improve treatment efficiency in stroke by reducing infarct volume size and MPO activity.


Sujet(s)
Anti-inflammatoires/administration et posologie , Encéphalite/prévention et contrôle , Reperfusion , Accident vasculaire cérébral/anatomopathologie , Accident vasculaire cérébral/thérapie , Animaux , Modèles animaux de maladie humaine , Encéphalite/imagerie diagnostique , Encéphalite/anatomopathologie , Immunohistochimie , Imagerie par résonance magnétique , Souris , Résultat thérapeutique
17.
CNS Neurosci Ther ; 24(3): 222-230, 2018 03.
Article de Anglais | MEDLINE | ID: mdl-29274300

RÉSUMÉ

INTRODUCTION: The relationship between blood metabolites and hemoglobin degradation products (BMHDPs) formed in the cerebrospinal fluid and the development of vasospasm and delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) has been the focus of several previous studies, but their molecular and cellular targets remain to be elucidated. METHODS: Because BMHDP-induced changes in Cav 2.3 channel function are thought to contribute to DCI after aSAH, we studied their modulation by unconjugated bilirubin (UCB) in an organotypical neuronal network from wild-type (WT) and Cav 2.3-deficient animals (KO). Murine retinae were isolated from WT and KO and superfused with nutrient solution. Electroretinograms were recorded before, during, and after superfusion with UCB. Transretinal signaling was analyzed as b-wave, implicit time, and area under the curve (AUC). RESULTS: Superfusion of UCB significantly attenuated the b-wave amplitude in the isolated retina from wild-type mice by 14.9% (P < 0.05), followed by gradual partial recovery (P = 0.09). Correspondingly, AUC decreased significantly with superfusion of UCB (P < 0.05). During washout, the b-wave amplitude returned to baseline (P = 0.2839). The effects of UCB were absent in Cav 2.3-deficient mice, lacking the expression of Cav 2.3 as proofed on the biochemical level. CONCLUSIONS: Ex vivo neuronal recording in the murine retina is able to detect transient impairment of transretinal signaling by UCB in WT, but not in KO. This new model may be useful to further clarify the role of calcium channels in neuronal signal alteration in the presence of BHMDPs.


Sujet(s)
Bilirubine/métabolisme , Canaux calciques de type R/métabolisme , Transporteurs de cations/métabolisme , Neurones/métabolisme , Rétine/métabolisme , Transmission synaptique/physiologie , Animaux , Canaux calciques de type R/génétique , Transporteurs de cations/génétique , Mâle , Souris transgéniques , Techniques de culture de tissus
18.
J Cereb Blood Flow Metab ; 37(5): 1687-1705, 2017 May.
Article de Anglais | MEDLINE | ID: mdl-26994042

RÉSUMÉ

In rats, spreading depolarization induces vasodilation/hyperemia in naïve tissue but the inverse response when artificial cerebrospinal fluid is topically applied to the brain containing (a) a nitric oxide-lowering agent and (b) elevated K+. The inverse response is characterized by severe vasoconstriction/ischemia. The perfusion deficit runs together with the depolarization in the tissue (=spreading ischemia). Here, we found in male Wistar rats that pre-treatment with artificial cerebrospinal fluid containing elevated K+ in vivo led to a selective decline in α2/α3 Na+/K+-ATPase activity, determined spectrophotometrically ex vivo. Moreover, spreading ischemia, recorded with laser-Doppler flowmetry and electrocorticography, resulted from artificial cerebrospinal fluid containing a nitric oxide-lowering agent in combination with the Na+/K+-ATPase inhibitor ouabain at a concentration selectively inhibiting α2/α3 activity. Decline in α2/α3 activity results in increased Ca2+ uptake by internal stores of astrocytes, vascular myocytes, and pericytes since Ca2+ outflux via plasmalemmal Na+/Ca2+-exchanger declines. Augmented Ca2+ mobilization from internal stores during spreading depolarization might enhance vasoconstriction, thus, contributing to spreading ischemia. Accordingly, spreading ischemia was significantly shortened when intracellular Ca2+ stores were emptied by pre-treatment with thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). These findings might have relevance for clinical conditions, in which spreading ischemia occurs such as delayed cerebral ischemia after subarachnoid hemorrhage.


Sujet(s)
Encéphalopathie ischémique/physiopathologie , Circulation cérébrovasculaire/physiologie , Dépression corticale envahissante/physiologie , Sodium-Potassium-Exchanging ATPase/métabolisme , Vasoconstriction/physiologie , Animaux , Encéphalopathie ischémique/métabolisme , Calcium/métabolisme , Liquide cérébrospinal/composition chimique , Circulation cérébrovasculaire/effets des médicaments et des substances chimiques , Électrocorticographie , Fluxmétrie laser Doppler , Mâle , Chlorure de potassium/pharmacologie , Rat Wistar , Spectrophotométrie , Vasoconstriction/effets des médicaments et des substances chimiques
19.
Lab Anim ; 50(6): 442-452, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27909194

RÉSUMÉ

The most important acute neurological diseases seen at neurosurgery departments are traumatic brain injuries (TBI) and subarachnoid hemorrhages (SAH). In both diseases the pathophysiological sequela are complex and have not been fully understood up to now, and rodent models using rats and mice are most suitable for the investigation of the pathophysiological details. In both models, surgery is performed under anesthesia, followed by assessment of their functional outcome and behavioral testing before brain tissue analysis after euthanasia. Postoperative analgesia is mandatory, and supplementary care is highly recommended for refinement purposes. Pain and stress assessment is mainly based on clinical and behavioral signs, and further research is needed to improve the evaluation of severity in these models.


Sujet(s)
Lésions traumatiques de l'encéphale/chirurgie , Modèles animaux de maladie humaine , Neurochirurgie/méthodes , Mesure de la douleur , Plan de recherche , Hémorragie meningée/chirurgie , Analgésiques/usage thérapeutique , Animaux , Lésions traumatiques de l'encéphale/physiopathologie , Souris , Douleur postopératoire/diagnostic , Rats , Stress physiologique , Hémorragie meningée/physiopathologie
20.
Ann Neurol ; 78(6): 887-900, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26312599

RÉSUMÉ

OBJECTIVE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited small-vessel disease, is associated with vascular aggregation of mutant Notch3 protein, dysfunction of cerebral vessels, and dementia. Pericytes, perivascular cells involved in microvascular function, express Notch3. Therefore, we hypothesize that these cells may play a role in the pathogenesis of CADASIL. METHODS: Two-, 7-, and 12-month-old CADASIL mutant mice (TgNotch3(R169C) ) and wild-type controls were examined regarding Notch3 aggregation in pericytes, the coverage of cerebral vessels by pericytes, pericyte numbers, capillary density, blood-brain barrier (BBB) integrity, astrocytic end-feet, and the expression of astrocytic gap junction and endothelial adherens junction protein using immunostaining and Western blot analysis. In addition, we examined cerebrovascular CO2 reactivity using laser Doppler fluxmetry and in vivo microscopy. RESULTS: With increasing age, mutated Notch3 aggregated around pericytes and smooth muscle cells. Notch3 aggregation caused significant reduction of pericyte number and coverage of capillaries by pericyte processes (p < 0.01). These changes were associated with detachment of astrocytic end-feet from cerebral microvessels, leakage of plasma proteins, reduction in expression of endothelial adherens junction protein, and reduced microvascular reactivity to CO2 . Smooth muscle cells were not affected by Notch3 accumulation. INTERPRETATION: Our results show that pericytes are the first cells affected by Notch3 aggregation in CADASIL mice. Pericyte pathology causes opening of the BBB and microvascular dysfunction. Therefore, protecting pericytes may represent a novel therapeutic strategy for vascular dementia.


Sujet(s)
Barrière hémato-encéphalique/anatomopathologie , CADASIL/étiologie , Vaisseaux capillaires/anatomopathologie , Cortex cérébral/vascularisation , Péricytes/anatomopathologie , Récepteurs Notch/métabolisme , Facteurs âges , Animaux , CADASIL/métabolisme , CADASIL/anatomopathologie , Modèles animaux de maladie humaine , Souris , Souris transgéniques , Mutation , Péricytes/métabolisme , Répartition aléatoire , Récepteur Notch3 , Récepteurs Notch/génétique , Méthode en simple aveugle
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE