Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Environ Manage ; 344: 118726, 2023 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-37573693

RÉSUMÉ

Quantifying drought's economic impacts has been key for decision-making to build future strategies and improve the development and implementation of proactive plans. However, climate change is changing drought frequency, intensity, and durability. These changes imply modifications of their economic impact, as longer droughts result in greater cumulative economic losses for water users. Though the longer the drought lasts, other factors also play a crucial role in its economic outcomes, such as Infrastructure capacity (IC), the Amount of Water in Storage (AWS) in reservoirs and aquifers, and short- and long-term responses to it. This study proposes and applies an analytical framework for the economic assessment of long-run droughts, assessing and explaining central Chile megadrought economic effects through the factors that begin to influence the economic impact level in this setting. High levels of both IC and the AWS, as well as short- and long-term responses of water users, allow for high resilience to long-run droughts, tolerating extraordinary water disruption in its society with relatively low total economic impacts. Despite this adaptability, long-term droughts bring places to a water-critical threshold where long-term adaptation strategies may be less flexible than short-term strategies, escalating the adverse economic effects. This fact suggests that the economic evaluation of megadrought needs to focus on future tipping points (substantial water scarcity). The tipping point depends on the IC, how water users manage the AWS, and adaptation strategies. Establishing the tipping point should be a priority for future interdisciplinary research.


Sujet(s)
Sécheresses , Alimentation en eau , Eau , Chili , Changement climatique
2.
Mol Ecol ; 32(9): 2219-2233, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36715263

RÉSUMÉ

The recurrent colonization of freshwater habitats and subsequent loss of diadromy is a major ecological transition that has been reported in many ancestrally diadromous fishes. Such residency is often accompanied by a loss of tolerance to seawater. The amphidromous Galaxias maculatus has repeatedly colonized freshwater streams with evidence that freshwater-resident populations exhibit stark differences in their tolerance to higher salinities. Here, we used transcriptomics to gain insight into the mechanisms contributing to reduced tolerance to higher salinities in freshwater resident populations. We conducted an acute salinity challenge (0 ppt to 23-25 ppt) and measured osmoregulatory ability (muscle water content) over 48 h in three populations: diadromous, saltwater intolerant resident (Toltén), and saltwater tolerant resident (Valdivia). RNA sequencing of the gills identified genes that were differentially expressed in association with the salinity change and associated with the loss of saltwater tolerance in the Toltén population. Key genes associated with saltwater acclimation were characterized in diadromous G. maculatus individuals, some of which were also expressed in the saltwater tolerant resident population (Valdivia). We found that some of these "saltwater acclimation" genes, including the cystic fibrosis transmembrane conductance regulator gene (CFTR), were not significantly upregulated in the saltwater intolerant resident population (Toltén), suggesting a potential mechanism for the loss of tolerance to higher salinities. As the suite of differentially expressed genes in the diadromous-resident comparison differed between freshwater populations, we hypothesize that diadromy loss results in unique evolutionary trajectories due to drift, so the loss of diadromy does not necessarily lead to a loss in upper salinity tolerance.


La colonización recurrente de hábitats de agua dulce y la subsecuente pérdida de diadromía es una transición ecológica importante que ha sido reportada en varias especies de peces con ancestros diádromos. Esta residencia está acompañada frecuentemente por la pérdida de tolerancia a ambientes de agua salada. Galaxias maculatus, especie anfídroma, ha colonizado ríos repetidamente y existe evidencia que las poblaciones residentes presentan diferencias respecto a la tolerancia al agua salada. En este estudio, usamos transcriptómica para dilucidar los mecanismos que contribuyen a la reducida tolerancia a altas salinidades en las poblaciones residentes de agua dulce. Realizamos un desafío agudo de salinidad (0 ppt a 23-2 ppt) y medimos la habilidad osmoreguladora (contenido de agua en músculo) por 48 horas en individuos de tres poblaciones: una diádroma, una intolerante a agua salada (Toltén) y una tolerante a agua salada (Valdivia). Con el secuenciamiento de ARN de las branquias identificamos los genes expresados diferencialmente al cambio de salinidad y cuales están asociados a la pérdida de tolerancia a agua salada en la población de Toltén. Genes claves asociados a la aclimatación al agua salada fueron caracterizados en individuos diádromos, algunos de ellos también se expresaron en la población residente tolerante al agua salada (Valdivia). Sin embargo, algunos genes involucrados en la aclimatación al agua salada, incluyendo el gen regulador de la conductancia transmembrana de la fibrosis quística (CFTR), no se diferenciaron significativamente en la población residente intolerante al agua salada (Toltén), sugiriendo un mecanismo potencial de la pérdida de tolerancia a ambientes con salinidad elevada. Como el conjunto de genes expresados difiere entre las dos poblaciones residentes al compararse con la población diádroma, hipotetizamos que la pérdida de diadromía resulta en trayectorias evolutivas únicas debido a deriva génica, por lo que la pérdida de la diadromía no necesariamente conlleva a la pérdida de la tolerancia a aguas saladas.


Sujet(s)
Osmériformes , Animaux , Osmériformes/génétique , Tolérance au sel/génétique , Évolution biologique , Acclimatation/génétique , Salinité , Expression des gènes , Branchies , Eau de mer
3.
Environ Res ; 209: 112808, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35085565

RÉSUMÉ

Microplastics (MPs) have been recognized as one of the most ubiquitous environmental pollutants globally. They have been found in all ecosystems studied to date, threatening biological diversity, ecosystem functioning and human health. The present study aimed to elucidate the environmental and anthropogenic drivers of MP dynamics in the whole catchment of the Biobío river, one of the largest rivers in South America. MP concentration and characteristics were analysed in 18 sites subjected to different sources of pollution and other human-related impacts. The sampling sites were classified in relation to altitudinal zones (highland, midland and lowland) and ecosystem types (fluvial and reservoir), and different water and territorial environmental variables were further collated and considered for analysis. Seven types of microplastic polymers were identified in the samples analysed, with a catchment mean (±SE) MP concentration of 22 ± 0.4 particles m-3, and MP presence being significantly higher in lowlands (26 ± 2 particle m-3) and in reservoirs (42 ± 14 particle m-3). The most abundant type of MP was fragments (84%), with a mean concentration of 37 ± 6 particles m-3. Overall, MP concentrations were low compared to those found in other studies, with a strong influence of human population size.


Sujet(s)
Microplastiques , Polluants chimiques de l'eau , Écosystème , Surveillance de l'environnement , Humains , Matières plastiques/analyse , Rivières , Polluants chimiques de l'eau/analyse
4.
Sci Total Environ ; 766: 144323, 2021 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-33418255

RÉSUMÉ

Connectivity plays a crucial role in maintaining the structural and functional attributes of river networks. Therefore, the loss of connectivity (fragmentation) alters the functioning and diversity patterns of the biota at local and regional scales. The global hydropower boom is one of the main drivers of river network fragmentation, with significant effects on the diversity of riverine biota. Analyses of beta diversity of fish assemblages in rivers with different degrees of fragmentation can give new insights into mechanisms that contribute to the responses of these assemblages to fragmentation. Here, fish beta diversity within six river networks of central Chile with different levels of fragmentation was studied to assess the responses of fish assemblages to fragmentation. A hypothesis of a significant effect of fragmentation on the beta diversity of native and non-native fish in riffles and pools was tested. This effect is expected to be modulated by both changes in environmental heterogeneity and direct obstruction of natural dispersal routes. Beta diversity based on variation of assemblage structure and environmental heterogeneity showed significant differences among river networks. Fish beta diversity showed a clear response to fragmentation in recently fragmented rivers. Specifically, the beta diversity of native fishes in pools and non-native fishes in riffles decreased with increase of the ratio between the longest non-fragmented sections of the river network to the total length of the network. These effects of fragmentation on fish assemblages were modulated by the biological features of each species, and open-water species were most severely affected. These results have significant implications for planning of the placement of new barriers in river networks subjected to hydropower boom. Planning of the placement of new barriers should consider the maintenance of long, connected sections within river networks in order to minimise the effects of fragmentation on fish biodiversity.


Sujet(s)
Écosystème , Rivières , Animaux , Biodiversité , Chili , Poissons
5.
Mol Ecol ; 29(24): 4857-4870, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33048403

RÉSUMÉ

Diadromy is known for having major effects on the distribution and richness of aquatic species, and so does its loss. The loss of diadromy has led to the diversification of many species, yet research focusing on understanding its molecular basis and consequences are limited. This is particularly true for amphidromous species despite being the most abundant group of diadromous species. Galaxias maculatus, an amphidromous species and one of the most widely distributed fishes in the Southern Hemisphere, exhibits many instances of nonmigratory or resident populations. The existence of naturally replicated resident populations in Patagonia can serve as an ideal system for the study of the mechanisms that lead to the loss of the diadromy and its ecological and evolutionary consequences. Here, we studied two adjacent river systems in which resident populations are genetically differentiated yet derived from the same diadromous population. By combining a reciprocal transplant experiment with genomic data, we showed that the two resident populations followed different evolutionary pathways by exhibiting a differential response in their capacity to survive in salt water. While one resident population was able to survive salt water, the other was not. Genomic analyses provided insights into the genes that distinguished (a) migratory from nonmigratory populations; (b) populations that can vs those that cannot survive a saltwater environment; and (c) between these resident populations. This study demonstrates that the loss of diadromy can be achieved by different pathways and that environmental (selection) and random (genetic drift) forces shape this dynamic evolutionary process.


Sujet(s)
Osmériformes , Migration animale , Animaux , Évolution biologique , Génome , Génomique , Osmériformes/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...