Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Bioresour Technol ; : 131064, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38964513

RÉSUMÉ

Sulfide oxidizing bacteria are used in industrial biodesulfurization processes to convert sulfide to sulfur. These bacteria can spatially separate sulfide removal from terminal electron transfer, thereby acting as sulfide shuttles. The mechanisms underlying sulfide shuttling are not yet clear. In this work, newly obtained sulfide removal data were used to develop a new model for anaerobic sulfide removal and this model was shown to be an improvement over two previously published models. The new model describes a fast chemical step and a consecutive slow enzymatic step. The improved model includes the effect of pH, with higher total sulfide removal at increasing pH, as well as partial sulfide removal at higher sulfide concentrations. The two-stage model is supported by recent developments in anaerobic sulfide removal research and contributes to a better understanding of the underlying mechanisms. The model is a step toward accurately modelling anaerobic sulfide removal in industrial systems.

2.
Bioelectrochemistry ; 158: 108710, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38636364

RÉSUMÉ

Sulphide oxidising bacteria (SOB) have the potential to be used for bioelectrochemical removal, i.e. oxidation, of sulphide from waste streams. In anaerobic conditions, SOB are able to spatially separate sulphide removal and terminal electron transfer to an electrode and act as a sulphide shuttle. However, it is not fully understood how SOB anaerobically remove sulphide and store charge equivalents, and where in this process sulphur is formed. Therefore, the redox behaviour of sulphide shuttling SOB was investigated at haloalkaline conditions using a glassy carbon rotating disc electrode (RDE) and cyclic voltammetry. Voltammograms of SOB in the absence and presence of sulphide were compared to voltammograms of abiotic sulphur species solutions. Polysulphide and sulphide showed different redox behaviour, with distinct potentials for oxidation of > -0.3 V (vs. Ag/AgCl) for polysulphide and > -0.1 V for sulphide. Comparing biotic to abiotic experiments lead to the hypothesis that SOB formed polysulphides during anaerobic sulphide removal, which stayed sorbed to the cells. With this study, further steps were taken in elucidating the mechanisms of sulphide shuttling by SOB.


Sujet(s)
Électrodes , Oxydoréduction , Sulfures , Sulfures/composition chimique , Sulfures/métabolisme , Bactéries/métabolisme , Techniques électrochimiques/méthodes , Anaérobiose
4.
Bioresour Technol ; 369: 128435, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36481375

RÉSUMÉ

Sulphide is a toxic and corrosive compound and requires removal from waste streams. Recent discoveries show that sulphide oxidising bacteria (SOB) from modern desulphurisation plants are able to spatially separate sulphide removal and oxygen reduction when exposed to intermittent anaerobic and aerobic environments. Here, SOB act as electron shuttles between electron donor and acceptor. The underlying mechanisms for electron shuttling are of yet unknown. To investigate the anaerobic sulphide removal of SOB, batch experiments and mathematical models were applied. The sulphide removal capacity decreased at increasing biomass concentrations. At 0.6 mgN/L SOB could remove up to 8 mgS/mgN in 30 min. It was found that biological activity determines sulphide removal, alongside chemical processes. Anaerobic oxidation of electron carriers was determined to only explain 0.1% of charge storage, where irreversible cleavage of long chain polysulphides could explain full sulphide storage. Different sulphide removal and intracellular storage processes are postulated.


Sujet(s)
Bactéries , Sulfures , Anaérobiose , Sulfures/composition chimique , Modèles théoriques , Oxydoréduction , Bactéries anaérobies , Bioréacteurs/microbiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...