Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Ecotoxicol Environ Saf ; 282: 116702, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39018732

RÉSUMÉ

Polluted environments often contain large amounts of toxic metals, such as cadmium, which pose a major threat to ecosystems and public health. Contamination by cadmium and its compounds is often observed in areas surrounding zinc mining sites and electroplating factories, and the control of cadmium pollution is essential for environmental safety and health. In this study, a highly efficient and straightforward separation strategy for K4Fe(CN)6@Fe3O4 nanocomposites is successfully developed to capture the Cd ions in the water environment. Batch adsorption experiments revealed that K4Fe(CN)6@Fe3O4 exhibited a high cadmium removal rate (greater than 98 %) at a pH level of 6.0 and solid-liquid ratio of 1.0 g/L at room temperature (298 K). Kinetic analysis revealed that the adsorption process followed a pseudo-second-order model and cadmium was rapidly removed in the first 10 min, with chemisorption dominating the capture of Cd2+ by K4Fe(CN)6@Fe3O4. Adsorption isotherms revealed a heterogeneous adsorption behavior, with a maximum adsorption capacity of 40.78 mg/g. The intrinsic adsorption of Cd2+ by K4Fe(CN)6@Fe3O4 occurring primarily through electrostatic interaction and ion exchange. In addition, K4Fe(CN)6@Fe3O4 exhibited an excellent regeneration capacity. Therefore, integrating Fe3O4 into the metal cyanide not only provided the composite material with excellent chemical stability and selective adsorption sites for Cd2+, but also facilitated subsequent sorbent collection and recovery. Overall, this study presents a simple and feasible approach for integrating Fe3O4 into potassium ferrocyanide frameworks for efficient cadmium removal from contaminated water.


Sujet(s)
Cadmium , Hexacyanoferrates II , Polluants chimiques de l'eau , Cadmium/composition chimique , Cadmium/analyse , Polluants chimiques de l'eau/analyse , Polluants chimiques de l'eau/composition chimique , Adsorption , Hexacyanoferrates II/composition chimique , Cinétique , Purification de l'eau/méthodes , Concentration en ions d'hydrogène , Nanocomposites/composition chimique
2.
Sci Total Environ ; 869: 161664, 2023 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-36681337

RÉSUMÉ

The widespread adoption of nuclear energy has increased the amount of radioactive cesium (Cs) that is discharged into waste streams, which can have environmental risks. In this paper, we provide a comprehensive summary of current advances in aqueous Cs removal by employing a bibliometric analysis. We collected 1580 articles related to aqueous Cs treatment that were published on the Web of Science database between 2012 and 2022. By applying bibliometric analysis combined with network analysis, we revealed the research distribution, knowledge base, research hotspots, and cutting-edge technologies in the field of aqueous Cs removal. Our findings indicate that China, Japan, and South Korea are the most productive countries with respect to Cs removal research. In addition, both historic events and environmental threats might have contributed to research in Asian countries having a higher focus on Cs removal as well as strong international cooperation between Asian countries. A detailed keyword analysis reveals the main knowledge base for aqueous Cs removal and highlights the potential of the adsorption-based method for treating Cs contamination. Furthermore, the results reveal that exploration of functional materials is a popular research topic in the field of Cs removal. Since 2012, novel materials, including Prussian blue, graphene oxide, hydrogel and nanocomposites, have been widely investigated because of their high capacity for Cs removal. On the basis of the detailed information, we report the latest research trends on aqueous Cs removal, and propose future research directions and describe the challenges related to effective Cs treatment. This scientometric review provides insights into current research hotspots and cutting-edge trends in addition to contributing to the development of this crucial research field.

3.
Environ Res ; 214(Pt 4): 114085, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-35987376

RÉSUMÉ

Cesium (Cs) is a byproduct of nuclear bombs, nuclear weapons testing, and nuclear fission in nuclear reactors. Cs can enter the human body through food or air and cause lasting damage. Highly efficient and selective removal of 137Cs from low-level radioactive effluents (LLREs), which contain many radionuclides and dissolved heavy metal species, is imperative for minimizing LLRE volume, and facilitating their final disposal. Prussian blue analogs (PBAs) have received much attention as materials for the removal of radioactive Cs because of their affinity for adsorbing Cs+. In this study, an inexpensive and readily available cyanide-based functional material (PBACu) exhibiting high efficiency and excellent selectivity toward Cs capture was designed through a facile low-temperature co-precipitation process. Nano-PBACu, crystallizing in the cubic space group (Fm-3m (225)), has an average pore size of 6.53 nm; consequently, PBACu can offer abundant atomic occupation sites for capturing and incorporating Cs. Here, the pseudo-second-order kinetic model and Langmuir model fitted well with the adsorption of Cs + on PBACu, with a maximum capture capacity of 95.75 mg/g within 5 min, confirming that PBACu could rapidly capture Cs ions. PBACu strongly and selectively interacted with Cs even in a simulant containing large Na+, NH4+, Ca2+, and Mg2+ ion concentrations in an aqueous solution. The process of Cs + adsorption by cyanide-based functional crystals was confirmed to involve the entry of Cs+ into cyanide-based functional crystals to replace K+ and finally achieve the lattice incorporation of Cs. The current results broaden the lattice theory of radionuclide Cs removal and provide a promising alternative for the immobilization of Cs from radioactive wastewater.


Sujet(s)
Césium , Cyanures , Adsorption , Césium/composition chimique , Humains , Concentration en ions d'hydrogène , Eaux usées/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE