Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
1.
Am J Transl Res ; 14(10): 7535-7551, 2022.
Article de Anglais | MEDLINE | ID: mdl-36398249

RÉSUMÉ

OBJECTIVES: We generated an in vitro fertilization and embryo transfer (IVF-ET) mouse model to investigate the molecular mechanism underlying the abnormal lipid metabolism found in IVF-ET offspring. METHODS: The glucose metabolism levels of offspring were assessed by glucose tolerance test (GTT), insulin tolerance test (ITT), and pyruvate tolerance test (PTT). The lipid metabolism levels were assessed by triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). RNA-seq was performed on liver tissues. mRNA and protein expression of relevant genes was verified by the quantitative real-time PCR and protein immunoblotting. HepG2 cells were transfected with either interfering RNA or overexpression plasmids to investigate the gene functions. RESULTS: Compared to the control, male IVF-ET offspring showed: 1) higher body, liver, and epididymal white adipose tissue weight; 2) disrupted glucolipid metabolism with abnormal GTT, ITT, and PTT; 3) significantly decreased GDF15 along with increased RGS16. Furthermore, phosphorylation of ERK1/2 and AKT was significantly reduced. In HepG2 cells, knockdown of GDF15 caused an abnormally increased RGS16 and decreased phosphorylation of ERK1/2 and AKT, accompanied by increased lipid deposition. In contrast, overexpression of GDF15 reduced expression of RGS16. Simultaneous knockdown of both GDF15 and RGS16 reversed lipid deposition. CONCLUSIONS: Down-regulation of GDF15 results in elevated RGS16, which causes the weakening of the downstream ERK1/2 and AKT phosphorylation, leading to abnormal lipid metabolism in the livers of IVF-ET male offspring. This suggests that the GDF15-RGS16-p-ERK1/2/p-AKT pathway plays a crucial role in liver lipid deposition in IVF-ET male offspring and could be a therapeutic target.

2.
Neuroscience ; 502: 41-51, 2022 10 15.
Article de Anglais | MEDLINE | ID: mdl-36041588

RÉSUMÉ

Prenatal hypoxia (PH) is one of the most common adverse stimulation during pregnancy. The brain is fragile in the fetal period and sensitive to hypoxia. The offspring who have experienced PH may be at increased risk of developing neurodevelopmental disorders after birth and various neuropsychiatric diseases after adulthood. In this study, pregnant mice used to generate PH offspring were treated with hypoxia (10.5% oxygen) from gestational day 12.5-17.5. Compared with control mice, the birth weight of offspring in the PH group was significantly lower and the male adult offspring exhibited significant depression-like behavior. The expression of the oxygen-sensitive subunit of hypoxia-inducible factor (Hif-1α) was significantly elevated, whereas Ten-eleven translocated methylcytosine dioxygenase 1 (Tet1) and c-Myc, which is closely related to cell proliferation, were significantly decreased in the hippocampus of the male offspring in the PH group. In addition, the PH group showed increased binding of Hif-1α to Tet1, and decreased binding of Tet1 to c-Myc, resulting in increased ubiquitinated degradation of c-Myc and decreased neurogenesis in the hippocampus of the male offspring. These findings suggest that Hif-1α regulates Tet1-c-Myc binding involved in depression-like behavior in PH offspring and Hif-1α can be used as a detection index of stress-related diseases.


Sujet(s)
Dioxygenases , Animaux , Femelle , Mâle , Souris , Grossesse , Hypoxie cellulaire/physiologie , Dépression , Dioxygenases/métabolisme , Hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Oxygène
3.
Ecotoxicol Environ Saf ; 239: 113682, 2022 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-35643027

RÉSUMÉ

Fluoride exposure has a detrimental effect on neurodevelopment, while the underlying processes remain unknown. The goal of this study was to investigate how fluoride impacts synaptogenesis, with a focus on the phosphorylation of Creb1 (p-Creb1)-brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) pathway. We generated a sodium fluoride (NaF) model using C57 BL/6 J mice exposed to 100 mg/L NaF from gestation day 1 (GD1) to GD20. It was identified that NaF treatment impaired the learning and memory abilities of the male offspring, reduced dendritic spine density, lowered postsynaptic density protein-95 (PSD95) and synaptophysin (SYN) expression in the male offspring's hippocampus, indicating that synaptic dysfunction may contribute to the cognitive impairment in the NaF model. In addition, in vivo experiment demonstrated that the protein abundance of BDNF and the ratio of p-Creb1 to Creb1 were increased in the hippocampus of NaF offspring, while the level of TrkB was reduced. Similarly, PC12 cells treated with NaF also showed increased expression of BDNF and decreased levels of TrkB. Notably, fluoride treatment increased p-Creb1 in vitro, while inhibiting p-Creb1 by 66615 significantly alleviated the effects of NaF exposure, indicating that p-Creb1 exerts a regulatory function in the BDNF-TrkB pathway. Altogether, these results demonstrated prenatal fluoride exposure triggered neurotoxicity in the male offspring hippocampus was linked to synaptogenesis damage caused by activating p-Creb1, which disrupted the BDNF-TrkB pathway.


Sujet(s)
Facteur neurotrophique dérivé du cerveau , Protéine de liaison à l'élément de réponse à l'AMP cyclique , Fluorures , Effets différés de l'exposition prénatale à des facteurs de risque , Récepteur trkB , Animaux , Facteur neurotrophique dérivé du cerveau/métabolisme , Cognition , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Femelle , Fluorures/toxicité , Hippocampe/métabolisme , Mâle , Souris , Souris de lignée C57BL , Phosphorylation , Grossesse , Effets différés de l'exposition prénatale à des facteurs de risque/physiopathologie , Protein-tyrosine kinases/métabolisme , Rats , Récepteur trkB/métabolisme , Transduction du signal
4.
Front Immunol ; 13: 856376, 2022.
Article de Anglais | MEDLINE | ID: mdl-35558075

RÉSUMÉ

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, characterized by progressive neuron degeneration or loss due to excessive accumulation of ß-amyloid (Aß) peptides, formation of neurofibrillary tangles (NFTs), and hyperphosphorylated tau. The treatment of AD has been only partially successful as the majority of the pharmacotherapies on the market may alleviate some of the symptoms. In the occurrence of AD, increasing attention has been paid to neurodegeneration, while the resident glial cells, like microglia are also observed. Microglia, a kind of crucial glial cells associated with the innate immune response, functions as double-edge sword role in CNS. They exert a beneficial or detrimental influence on the adjacent neurons through secretion of both pro-inflammatory cytokines as well as neurotrophic factors. In addition, their endocytosis of debris and toxic protein like Aß and tau ensures homeostasis of the neuronal microenvironment. In this review, we will systematically summarize recent research regarding the roles of microglia in AD pathology and latest microglia-associated therapeutic targets mainly including pro-inflammatory genes, anti-inflammatory genes and phagocytosis at length, some of which are contradictory and controversial and warrant to further be investigated.


Sujet(s)
Maladie d'Alzheimer , Maladies neurodégénératives , Maladie d'Alzheimer/traitement médicamenteux , Maladie d'Alzheimer/étiologie , Maladie d'Alzheimer/métabolisme , Peptides bêta-amyloïdes/métabolisme , Humains , Microglie/métabolisme , Maladies neurodégénératives/métabolisme , Neurones/métabolisme
5.
Front Mol Biosci ; 9: 857875, 2022.
Article de Anglais | MEDLINE | ID: mdl-35480893

RÉSUMÉ

Background: Paternal lifestyle, stress and environmental exposures play a crucial role in the health of offspring and are associated with non-genetic inheritance of acquired traits, however the underlying mechanisms are unclear. In this study, we aimed to find out how the sperm tsRNA involved in paternal high-fat diet induced abnormal gluconeogenesis of F1 offspring, and explore the underlying molecular mechanism of its regulation. Method: We generated a paternal high fat diet (42% kcal fat) model to investigate the mechanism by which paternal diet affects offspring metabolism. Four-week-old C57BL/6J male mice were randomly assigned into two groups to receive either a control diet (CD; 10% kcal fat) or a high-fat (HFD; 42% kcal fat) diet for 10 weeks, and mice from each group were then mated with 8-week-old females with control diet in a 1:2 ratio to generate F1. F0 sperms were isolated and small RNAs was sequenced by high-throughput sequencing. Metabolic phenotypes were examined with both F0 and F1. Results: A significant increase in body weight was observed with HFD-F0 mice at 8 weeks of age as compared to CD mice at the same age. F0 mice showed impaired glucose tolerance (GTT), resistance to insulin tolerance (ITT) and increased pyruvate tolerance (PTT) at 14 weeks. HFD-F1 male mice showed no significant difference in body weight. An increase in PTT was found at 13 weeks of age and no significant changes in GTT and ITT. PEPCK and G6Pase that related to gluconeogenesis increased significantly in the liver of HFD-F1 male mice. Sperm sequencing results showed that 5'tsRNA-Gly-GCC derived from tRNA-Gly-GCC-2 specifically was remarkably upregulated in sperm of HFD F0 mice. Q-PCR further showed that this tsRNA was also increased in the liver of HFD-F1 comparison with CD-F1 mice. In addition, we found that 5'tsRNA-Gly-GCC can regulate Sirt6-FoxO1 pathway and be involved in the gluconeogenesis pathway in liver. Conclusion: 5'tsRNA-Gly-GCC that increased in HFD mice mature sperms can promote gluconeogenesis in liver by regulating Sirt6-FoxO1 pathway, which might represent a potential paternal epigenetic factor mediating the intergenerational inheritance of diet-induced metabolic alteration.

6.
Biol Reprod ; 106(4): 687-698, 2022 04 26.
Article de Anglais | MEDLINE | ID: mdl-34935917

RÉSUMÉ

Assisted reproductive technology (ART) has been used globally among infertile couples. However, many epidemiological investigations have indicated that ART is associated with a range of long-term adverse health outcomes in offspring, including cardiovascular disease, obesity, and increased plasma lipid levels. Until now, direct evidence has been limited regarding the pathological changes in vascular function in fetuses with ART. In this study, human umbilical cords were collected from healthy normal pregnancies and in vitro fertilization and embryo transfer (IVF-ET) pregnancies. Vascular functional studies involving acetylcholine (ACh), antagonists of its specific receptors, and L-type calcium channel/PKC-MLC20 phosphorylation pathway specific inhibitors were conducted. Quantitative real-time PCR, Western blotting, and methylation analyses were performed on umbilical vein samples. We found that the umbilical vein constriction induced by ACh in the IVF-ET group was significantly attenuated compared with that in the healthy normal pregnancy group, which was not only associated with the hypermethylation of ACh muscarinic receptor subtype 3 (CHRM3) and decreased expression of CHRM3, PKCß, and CaV1.2, but was also related to the reduced phosphorylation of MLC20. This study revealed that the hypermethylation of CHRM3, leading to a reduction in CHRM3 expression and downregulation of the CaV1.2/PKC-MLC20 phosphorylation pathway, was responsible for the decreased sensitivity to ACh observed in the umbilical vein under IVF-ET conditions. The hypermethylation of CHRM3 caused by IVF-ET might play an important role in altered vasoconstriction and impact cardiovascular systems in the long run.


Sujet(s)
Transfert d'embryon , Récepteur muscarinique de type M3 , Techniques de reproduction assistée , Acétylcholine , Méthylation de l'ADN , Transfert d'embryon/méthodes , Femelle , Fécondation in vitro/méthodes , Humains , Grossesse , Récepteur muscarinique de type M3/métabolisme , Veines ombilicales
7.
Front Neurosci ; 15: 755554, 2021.
Article de Anglais | MEDLINE | ID: mdl-34759794

RÉSUMÉ

The fetal origins of adult disease (FOAD) hypothesis, which was proposed by David Barker in the United Kingdom in the late 1980s, posited that adult chronic diseases originated from various adverse stimuli in early fetal development. FOAD is associated with a wide range of adult chronic diseases, including cardiovascular disease, cancer, type 2 diabetes and neurological disorders such as schizophrenia, depression, anxiety, and autism. Intrauterine hypoxia/prenatal hypoxia is one of the most common complications of obstetrics and could lead to alterations in brain structure and function; therefore, it is strongly associated with neurological disorders such as cognitive impairment and anxiety. However, how fetal hypoxia results in neurological disorders remains unclear. According to the existing literature, we have summarized the causes of prenatal hypoxia, the effects of prenatal hypoxia on brain development and behavioral phenotypes, and the possible molecular mechanisms.

8.
BMC Med Genomics ; 14(1): 12, 2021 01 06.
Article de Anglais | MEDLINE | ID: mdl-33407466

RÉSUMÉ

BACKGROUND: Familial progressive hyper- and hypopigmentation (FPHH, MIM 145250) is a rare hereditary skin disorder that is predominantly characterized by progressive, diffuse, partly blotchy hyperpigmented lesions intermingled with scattered hypopigmented spots, lentigines and sometimes Cafe-au-lait spots (CALs). Heterozygous mutations of the KIT ligand (KITLG, MIM 184745) gene are responsible for FPHH. To date, only eight KITLG mutations have been reported to be associated with FPHH, and no clear genotype-phenotype correlations have been established. This study aimed to identify the causative mutations in the KITLG gene in two Chinese FPHH patients. METHODS: Direct sequencing of the coding regions of KITLG was performed. Pathogenicity prediction was performed using bioinformatics tools, including SIFT, Polyphen2, and SWISS-MODEL, and the results were further evaluated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: The novel mutation c.104A > T (p.Asn35Ile) and the recurrent mutation c.101C > T (p.Thr34Ile) in KITLG were identified. As shown using SIFT and Polyphen-2 software, both mutations identified in this study were predicted to be detrimental variations. Three-dimensional protein structure modeling indicated that the mutant KITLG proteins might affect the affinity of KITLG for its receptor, c-KIT. According to the 2015 ACMG guidelines, the novel mutation c.104A > T was 'likely pathogenic'. CONCLUSIONS: To date, most of the identified KITLG mutations have been clustered within the conserved VTNNV motif (amino acids 33-37) in exon 2. The known mutations are only involved in 33 V, 34 T, 36 N, and 37 V but not 35 N. We have now identified a novel mutation in KITLG, c.104A > T, that was first reported in FPHH within the conserved 35 N motif. These results strengthen our understanding of FPHH and expand the mutational spectrum of the KITLG gene.


Sujet(s)
Hypopigmentation , Facteur de croissance des cellules souches/génétique , Adulte , Albinisme oculocutané , Chine , Humains
9.
Curr Pharm Biotechnol ; 21(8): 727-733, 2020.
Article de Anglais | MEDLINE | ID: mdl-31845629

RÉSUMÉ

BACKGROUND: Placental blood vessels play important roles in maternal-fetal circulation. Although pathologic mechanisms of preeclampsia are unclear, it is known that placental vascular dysfunction could contribute to pregnant hypertension. However, placental micro-vessel function or dysfunction at preterm has not been investigated. METHODS: Human placentas from normal and preeclamptic pregnancies at preterm and term were obtained. Placental micro-vessels were used for determining vascular tension and responses to various vasoconstrictors as well as intracellular calcium store capability. It was the first time to show vascular responses in placental arteries to angiotensin II, endothelin-1, and other vascular drugs at preterm. RESULTS: Compared to the control, placental vascular contractile responses to angiotensin II and caffeine were significantly decreased, while placental vascular responses to KCl, endothelin-1, and bradykinin were not significantly altered in the later term group in preeclampsia. In comparison of placental micro-vessel tension between the preterm and later term, caffeine- and serotonin-induced vascular contractions were significantly weaker in the preterm than that in the later term. On the contrary, vascular response to angiotensin II was increased in the preterm preeclampsia, while KCl-, endothelin-1, and bradykinin-mediated placental vessel responses in the preterm preeclampsia were similar to that in later term preeclampsia. CONCLUSION: New data showed that micro-vessel responses to angiotensin II and serotonin, not endothelin- 1 or bradykinin, were significantly reduced in the human placentas at preterm, and intracellular Ca2+ store capacity was damaged too, providing important information on possible contributions of placental vascular dysfunction to pregnant hypertension.


Sujet(s)
Microvaisseaux/effets des médicaments et des substances chimiques , Placenta/vascularisation , Pré-éclampsie/physiopathologie , Vasoconstriction/effets des médicaments et des substances chimiques , Vasoconstricteurs/pharmacologie , Angiotensine-II/pharmacologie , Artères/effets des médicaments et des substances chimiques , Endothéline-1/pharmacologie , Femelle , Humains , Techniques in vitro , Nouveau-né , Placenta/effets des médicaments et des substances chimiques , Grossesse , Naissance prématurée , Sérotonine/pharmacologie , Naissance à terme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...