Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.319
Filtrer
1.
Front Neurol ; 15: 1412117, 2024.
Article de Anglais | MEDLINE | ID: mdl-39087006

RÉSUMÉ

Background: The anterior cingulate gyrus (ACG) is an important regulatory region for pain-related information. However, the ACG is composed of subregions with different functions. The mechanisms underlying the brain networks of different subregions of the ACG in patients with migraine without aura (MwoA) are currently unclear. Methods: In the current study, resting-state functional magnetic resonance imaging (rsfMRI) and functional connectivity (FC) were used to investigate the functional characteristics of ACG subregions in MwoA patients. The study included 17 healthy volunteers and 28 MwoA patients. The FC calculation was based on rsfMRI data from a 3 T MRI scanner. The brain networks of the ACG subregions were compared using a general linear model to see if there were any differences between the two groups. Spearman correlation analysis was used to examine the correlation between FC values in abnormal brain regions and clinical variables. Results: Compared with healthy subjects, MwoA patients showed decreased FC between left subgenual ACG and left middle cingulate gyrus and right middle temporal gyrus. Meanwhile, MwoA patients also showed increased FC between pregenual ACG and right angular gyrus and increased FC between right pregenual ACG and right superior occipital gyrus. The FC values between pregenual ACG and right superior occipital gyrus were significantly positively correlated with the visual analogue scale. Conclusion: Disturbances of FC between ACG subregions and default model network and visual cortex may play a key role in neuropathological features, perception and affection of MwoA. The current study provides further insights into the complex scenario of MwoA mechanisms.

2.
Schizophr Res ; 271: 345-352, 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39089102

RÉSUMÉ

BACKGROUND: Ongoing psychiatric follow-up and medication adherence improve outcomes for patients with psychotic disorders. Due to COVID-19, outpatient care may have been disrupted, impacting healthcare utilization. METHODS: A retrospective population-wide study was conducted for adults in Manitoba, Canada. Medication adherence and healthcare utilization were examined from 2019 to 2021. The presence of a diagnosed psychotic disorder was identified in the five years before the index date in each year. The LAI and clozapine cohorts consisted of those who received at least two prescriptions in each year 180 days before the March 20th index date. The change in adherence was measured using the average Medication Possession Ratio. Healthcare utilization rates were compared using Generalized Estimating Equation models. RESULTS: There were no significant differences between LAI and clozapine discontinuation rates before and during the pandemic. In the LAI cohort, general practitioner visits decreased significantly (-3.5 %, p = 0.039) across four quarters of 2021 versus 2019. All-cause hospitalizations decreased by 16.8 % in 2020 versus 2019 (p = 0.0055), while psychiatric hospitalizations decreased by 18.7 % across four quarters in 2020 (p = 0.0052) and 13.7 % in 2021 (p = 0.0425), versus 2019 in the LAI cohort. There was a significant transition to virtual care during the first wave of COVID-19 (71 % in clozapine, 51 % in LAI cohorts). Trends in total outpatient visits and non-psychiatric hospitalizations remained stable. CONCLUSION: COVID-19 had no substantial impact on LAI and clozapine discontinuation rates for patients previously adherent. Outpatient care remained stable, with a significant proportion of visits being done virtually at the outset of the pandemic.

3.
Microbiol Res ; 288: 127838, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39153466

RÉSUMÉ

With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.

4.
Oncologist ; 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39102756

RÉSUMÉ

BACKGROUND: Biliary tract cancer (BTC) is a highly malignant tumor, with limited therapy regimens and short response duration. In this study, we aim to assess the efficacy and safety of the combination of camrelizumab, apatinib, and capecitabine as the first- or second-line treatment in patients with advanced BTC. METHODS: In this phase 2, nonrandomized, prospective study, eligible patients received camrelizumab (200 mg, d1, Q3W), apatinib (250 mg, qd, d1-d21, Q3W), and capecitabine (1000 mg/m², bid, d1-d14, Q3W) until trial discontinued. The primary endpoint was the objective response rate (ORR). The secondary endpoints were disease control rate, progression-free survival (PFS), overall survival (OS), and safety. RESULTS: From July 2019 to April 2023, we enrolled a total of 28 patients, of whom 14 patients were in the first-line treatment setting and 14 patients were in the second-line setting. At the data cutoff (April 30, 2023), the median follow-up duration was 18.03 months. Eight of 28 patients reached objective response (ORR: 28.57%), with an ORR of 50% and 7.1% for first-line and second-line treatment patients (P = .033). The median PFS was 6.30 months and the median OS was 12.80 months. Grade 3 or 4 adverse events (AEs) occurred in 9 (32.14%) patients, including elevated transaminase, thrombocytopenia, etc. No serious treatment-related AEs or treatment-related deaths occurred. CONCLUSIONS: In this trial, the combination of camrelizumab, apatinib, and capecitabine showed promising antitumor activity and manageable toxicity in patients with advanced BTC, especially in the first-line setting. CLINICAL TRIAL REGISTRATION: NCT04720131.

5.
Mol Divers ; 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39117890

RÉSUMÉ

Given the critical necessity for the development of more potent anti-cancer drugs, a series of novel compounds incorporating trifluoromethyl groups within the privileged 2-anilinoquinoline scaffold was designed, synthesized, and subjected to biological evaluation through a pharmacophore hybridization strategy. Upon evaluating the in vitro anti-cancer characteristics of the target compounds, it became clear that compound 8b, which contains a (4-(piperazin-1-yl)phenyl)amino substitution at the 2-position of the quinoline skeleton, displayed superior efficacy against four cancer cell lines by inducing apoptosis and cell cycle arrest. Following research conducted in a PC3 xenograft mouse model, it was found that compound 8b exhibited significant anti-cancer efficacy while demonstrating minimal toxicity. Additionally, the analysis of a 217-kinase panel pinpointed SGK1 as a potential target for this compound class with anti-cancer capabilities. This finding was further verified through molecular docking analysis and cellular thermal shift assays. To conclude, our results emphasize that compound 8b can be used as a lead compound for the development of anti-cancer drugs that target SGK1.

6.
Medicine (Baltimore) ; 103(32): e39187, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39121279

RÉSUMÉ

RATIONALE: Bladder urothelial carcinoma (UC) is a common urinary system tumor that is generally diagnosed by cystoscopy combined with pathological biopsy. However, complete exophytic UC of the bladder is very rare and difficult to diagnose. Early diagnosis and accurate identification of such tumors, followed by aggressive surgical treatment, is essential for the management of these patients. PATIENT CONCERNS: An 84-year-old man was admitted to the hospital with dysuria, a poor diet, and significant weight loss. DIAGNOSIS: Pelvic computed tomography and magnetic resonance imaging revealed an exteriophytic round mass on the right lateral wall of the bladder. Cystoscopy revealed a necrotic mass on the right lateral wall of the bladder cavity, and no tumor cells were found following the biopsy. The tumor was removed via partial cystectomy, and the pathological result indicated high-grade muscle-invasive UC. INTERVENTIONS: The patient refused radical cystectomy and underwent laparoscopic partial cystectomy plus pelvic lymph node dissection followed by cisplatin plus gemcitabine chemotherapy. OUTCOMES: The patient's mental state and appetite were significantly improved after the urinary tube was removed 1 week after surgery. His general state was significantly improved after 1 month of follow-up but died of acute cerebral infarction 3 months after surgery. LESSONS: UC of the bladder may grow completely out of the bladder without symptoms such as gross hematuria; thus, early diagnosis is difficult. For high-risk individuals, regular imaging tests may help to detect tumors early. Partial cystectomy is a reliable surgical modality for bladder preservation in such patients.


Sujet(s)
Cystectomie , Tumeurs de la vessie urinaire , Humains , Mâle , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/diagnostic , Tumeurs de la vessie urinaire/chirurgie , Sujet âgé de 80 ans ou plus , Cystectomie/méthodes , Carcinome transitionnel/diagnostic , Carcinome transitionnel/chirurgie , Carcinome transitionnel/anatomopathologie , Issue fatale , Tomodensitométrie , Imagerie par résonance magnétique
7.
Biodes Res ; 6: 0040, 2024.
Article de Anglais | MEDLINE | ID: mdl-39108279

RÉSUMÉ

Lactoferrin is an iron-binding glycoprotein with antibacterial, antitumor, and immunomodulatory functions derived from milk and mucosal secretions. Lactoferrin is used in various products, such as infant formula milk powder, nutritional supplements, and cosmetics. Researchers have developed new technologies to produce lactoferrin because there are limitations in the separation and purification of lactoferrin from milk that cannot compensate for the market demand. Therefore, synthetic systems of lactoferrin have been developed with the development of genetic engineering, and the structure of lactoferrin expressed in heterologous systems is very similar to that of natural lactoferrin. The structure and functions of lactoferrin and the design and construction of synthetic lactoferrin biological systems, especially microbial synthetic systems, including prokaryotic and eukaryotic host-expression systems, are described. On the basis of these results, we summarize the challenges and solutions for constructing systems of high-yield lactoferrin. The development directions of recombinant lactoferrin are discussed in this review. Overall, the design and development of these synthetic biological systems have allowed us to explore the great potential of the industrial large-scale preparation of lactoferrin.

8.
Hellenic J Cardiol ; 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39128706

RÉSUMÉ

BACKGROUND: Aortic dissection remains a life-threatening condition necessitating accurate diagnosis and timely intervention. This study aimed to unravel phenotypic heterogeneity in Stanford type B aortic dissection (TBAD) patients through machine learning clustering analysis of cardiovascular CT imaging. METHODS: Electronic medical records were collected to extract demographic and clinical features of TBAD patients. Exclusion criteria ensured homogeneity and clinical relevance of the TBAD cohort. Controls were selected based on age, comorbidity status, and imaging availability. Aortic morphological parameters were extracted from CT angiography (CTA) and subjected to k-means clustering analysis to identify distinct phenotypes. RESULTS: Clustering analysis revealed three phenotypes of TBAD patients with significant correlations to population characteristics and dissection rates. This pioneering study utilized CT-based three-dimensional reconstruction to classify high-risk individuals, demonstrating the potential of machine learning in enhancing diagnostic accuracy and personalized treatment strategies. Recent advancements in machine learning have garnered attention in cardiovascular imaging, particularly in aortic dissection research. These studies leverage various imaging modalities to extract valuable features and information from cardiovascular images, paving the way for more personalized interventions. CONCLUSIONS: This study provides insights into the phenotypic heterogeneity of TBAD patients using machine learning clustering analysis of cardiovascular CT imaging. The identified phenotypes exhibit correlations with population characteristics and dissection rates, highlighting the potential of machine learning in risk stratification and personalized management of aortic dissection. Further research in this field holds promise for improving diagnostic accuracy and treatment outcomes in aortic dissection patients.

9.
DNA Cell Biol ; 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39133108

RÉSUMÉ

Circular RNAs (circRNAs) and eukaryotic translation initiation factor 4A3 (EIF4A3) have been reported to participate in the pathogenesis of nasopharyngeal carcinoma (NPC), but their mechanism has not been fully understood. This research aimed to confirm the role and regulatory mechanism of hsa_circ_0049396 interacting with EIF4A3 in NPC tumorigenesis. Quantitative real time polymerase chain reaction (qRT-PCR) was executed to detect the levels of hsa_circ_0049396 and EIF4A3. Cell function experiments and nude mice xenograft assay were used to confirm the role of hsa_circ_0049396 in NPC. The regulatory effect of EIA4A3 on hsa_circ_0049396 was determined by circInteractome prediction, RNA binding protein immunoprecipitation (RIP) assay, and qRT-PCR. In addition, the Hippo-YAP pathway-related proteins and EIF4A3 protein were detected by western blotting. hsa_circ_0049396 was proved to be downregulated in NPC samples, and its low expression indicated the poor prognosis of NPC. After upregulating hsa_circ_0049396 in NPC cells, the proliferation, migration, invasion, and tumor growth in vivo were suppressed by inhibiting the Hippo-YAP pathway. Moreover, EIF4A3 bound to the flanking regions of the hsa_circ_0049396 to enhance hsa_circ_0049396 expression in NPC cells. hsa_circ_0049396 mediated by EIF4A3 in NPC can attenuate NPC tumorigenesis by inhibiting the Hippo-YAP pathway. This finding may provide a potential early diagnostic biomarker or drug target to improve the precision medicine approaches of NPC.

10.
Acta Biomater ; 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39097127

RÉSUMÉ

Immunotherapy, as a promising treatment strategy for cancer, has been widely employed in clinics, while its efficiency is limited by the immunosuppression of tumor microenvironment (TME). Tumor-associate macrophages (TAMs) are the most abundant immune cells infiltrating the TME and play a crucial role in immune regulation. Herein, a M0-type macrophage-mediated drug delivery system (PR-M) was designed for carrying Toll-like receptors (TLRs) agonist-loaded nanoparticles. When TLR agonist R848 was released by responding to the TME, the PR-Ms were polarized from M0-type to M1-type and TAMs were also stimulated from M2-type to M1-type, which eventually reversed the immunosuppressive states of TME. By synergizing with the released R848 agonists, the PR-M significantly activated CD4+ and CD8+ T cells in the TME and turned the 'cold' tumor into 'hot' tumor by regulating the secretion of cytokines including IFN-γ, TNF-α, IL-10, and IL-12, thus ultimately promoting the activation of antitumor immunity. In a colorectal cancer mouse model, the PR-M treatment effectively accumulated at the tumor site, with a 5.47-fold increase in M1-type and a 65.08 % decrease in M2-type, resulting in an 85.25 % inhibition of tumor growth and a 87.55 % reduction of tumor volume compared with the non-treatment group. Our work suggests that immune cell-mediated drug delivery systems can effectively increase drug accumulation at the tumor site and reduce toxic side effects, resulting in a strong immune system for tumor immunotherapy. STATEMENT OF SIGNIFICANCE: The formation of TME and the activation of TAMs create an immunosuppressive network that allows tumor to escape the immune system and promotes its growth and spread. In this study, we designed an M0-type macrophage-mediated drug delivery system (PR-M). It leverages the synergistic effect of macrophages and agonists to improve the tumor immunosuppressive micro-environment by increasing M1-type macrophages and decreasing M2-type macrophages. As part of the treatment, the drug-loaded macrophages endowed the system with excellent tumor targeting. Furthermore, loading R848 into TME-responsive nanoparticles could protect macrophages and reduce the potential toxicity of agonists. Further investigations demonstrated that the designed PR-M could be a feasible strategy with high efficacy in tumor targeting, drug loading, autoimmunity activation, and lower side effects.

11.
J Physiol Investig ; 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39175189

RÉSUMÉ

ABSTRACT: Pulmonary arterial hypertension (PAH) is characterized by persistently elevated pulmonary artery pressure and vascular resistance. Sympathetic overactivity in hypertension participates in pulmonary vascular remodeling and heart failure. The present study aims to explore the efficacy of highly selective thoracic sympathectomy (HSTS) on lowering pulmonary artery pressure, reversing pulmonary vascular remodeling, and improving right ventricular function in rats. A total of 24 Sprague-Dawley rats were randomly assigned into the control group (n = 8) and experimental group (n = 16). Rats in the control group were intraperitoneally injected with 0.9% normal saline, and those in the experimental group were similarly administered with received monocrotaline (MCT) injections at 60 mg/kg. Two weeks later, rats in the experimental group were further subdivided randomly into the MCT-HSTS group (n = 8) and MCT-sham group (n = 8), and they were surgically treated with HSTS and sham operation, respectively. Two weeks later, significantly lowered mean pulmonary artery pressure (mPAP), pulmonary artery systolic pressure (sPAP), and the ratio of sPAP to femoral artery systolic pressure (sFAP) were detected in the MCT-HSTS group than those of the MCT-sham group. In addition, rats in the MCT-HSTS group presented a significantly lower ratio of vascular wall area to the total vascular area (WT%), right ventricular hypertrophy index, and degrees of right ventricular fibrosis and lung fibrosis in comparison to those of the MCT-sham group. HSTS significantly downregulated protein levels of inflammasomes in pulmonary artery smooth muscle cells (PASMCs). Collectively, HSTS effectively reduces pulmonary artery pressure, pulmonary arteriolar media hypertrophy, and right ventricular hypertrophy in MCT-induced PAH rats. It also exerts an anti-inflammatory effect on PASMCs in PAH rats by suppressing inflammasomes and the subsequent release of inflammatory cytokines.

12.
Mol Cell Proteomics ; : 100828, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39147029

RÉSUMÉ

The plasma membrane-localized receptor kinase FERONIA (FER) plays critical roles in a remarkable variety of biological processes throughout the life cycle of Arabidopsis thaliana. Revealing the molecular connections of FER that underlie these processes starts with identifying the proteins that interact with FER. We applied pupylation-based interaction tagging (PUP-IT) to survey cellular proteins in proximity to FER, encompassing weak and transient interactions that can be difficult to capture for membrane proteins. We reproducibly identified 581, 115, and 736 specific FER-interacting protein candidates in protoplasts, seedlings, and flowers, respectively. We also confirmed fourteen previously characterized FER-interacting proteins. Protoplast transient gene expression expedited the testing of new gene constructs for PUP-IT analyses and the validation of candidate proteins. We verified the proximity labeling of five selected candidates that were not previously characterized as FER-interacting proteins. The PUP-IT method could be a valuable tool to survey and validate protein-protein interactions for targets of interest in diverse subcellular compartments in plants.

13.
Ann Hepatol ; : 101538, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39147129

RÉSUMÉ

INTRODUCTION AND OBJECTIVES: Prostate apoptosis response protein-4(PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma(HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS: TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; Expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS: Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase(JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS: PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.

14.
ACS Sens ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39150333

RÉSUMÉ

Owing to the overlapping and cross-interference of absorption lines in multicomponent gases, the simultaneous measurement of such gases via laser absorption spectroscopy frequently necessitates the use of supplementary pressure sensors to distinguish the spectral lines. Alternatively, it requires multiple lasers combined with time-division multiplexing to independently scan the absorption peaks of each gas, thereby preventing interference from other gases. This inevitably escalates both the cost of the system and the complexity of the gas pathway. In response to these challenges, a mid-infrared sensor employing a neural network-based decoupling algorithm for aliasing spectral is developed, enabling the simultaneous detection of methane(CH4), water vapor(H2O), and ethane(C2H6). The sensor system underwent evaluation in a controlled laboratory environment. Allan deviation analysis revealed that the minimum detection limits for CH4,H2O, and C2H6 were 6.04, 118.44, and 1 ppb, respectively, with an averaging time of 3 s. The performance of the proposed sensor demonstrates that the aliasing spectral decoupling algorithm based on neural network combined with wavelength-modulated spectroscopy technology has the advantages of high sensitivity, low cost and low complexity, showing its potential for simultaneous detection of multicomponent trace gases in various fields.

15.
Circulation ; 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39166327

RÉSUMÉ

BACKGROUND: Colchicine has been approved to reduce cardiovascular risk in patients with coronary heart disease on the basis of its potential benefits demonstrated in the COLCOT (Colchicine-Optical Coherence Tomography Trial) and LoDoCo2 studies. Nevertheless, there are limited data available about the specific impact of colchicine on coronary plaques. METHODS: This was a prospective, single-center, randomized, double-blind clinical trial. From May 3, 2021, until August 31, 2022, a total of 128 patients with acute coronary syndrome aged 18 to 80 years with lipid-rich plaque (lipid pool arc >90°) detected by optical coherence tomography were included. The subjects were randomly assigned in a 1:1 ratio to receive either colchicine (0.5 mg once daily) or placebo for 12 months. The primary end point was the change in the minimal fibrous cap thickness from baseline to the 12-month follow-up. RESULTS: Among 128 patients, 52 in the colchicine group and 52 in the placebo group completed the study. The mean age of the 128 patients was 58.0±9.8 years, and 25.0% were female. Compared with placebo, colchicine therapy significantly increased the minimal fibrous cap thickness (51.9 [95% CI, 32.8 to 71.0] µm versus 87.2 [95% CI, 69.9 to 104.5] µm; difference, 34.2 [95% CI, 9.7 to 58.6] µm; P=0.006), and reduced average lipid arc (-25.2° [95% CI, -30.6° to -19.9°] versus -35.7° [95% CI, -40.5° to -30.8°]; difference, -10.5° [95% CI, -17.7° to -3.4°]; P=0.004), mean angular extension of macrophages (-8.9° [95% CI, -13.3° to -4.6°] versus -14.0° [95% CI, -18.0° to -10.0°]; difference, -6.0° [95% CI, -11.8° to -0.2°]; P=0.044), high-sensitivity C-reactive protein level (geometric mean ratio, 0.6 [95% CI, 0.4 to 1.0] versus 0.3 [95% CI, 0.2 to 0.5]; difference, 0.5 [95% CI, 0.3 to 1.0]; P=0.046), interleukin-6 level (geometric mean ratio, 0.8 [95% CI, 0.6 to 1.1] versus 0.5 [95% CI, 0.4 to 0.7]; difference, 0.6 [95% CI, 0.4 to 0.9]; P=0.025), and myeloperoxidase level (geometric mean ratio, 1.0 [95% CI, 0.8 to 1.2] versus 0.8 [95% CI, 0.7 to 0.9]; difference, 0.8 [95% CI, 0.6 to 1.0]; P=0.047). CONCLUSIONS: Our findings suggested that colchicine resulted in favorable effects on coronary plaque stabilization at optical coherence tomography in patients with acute coronary syndrome. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04848857.

16.
Front Immunol ; 15: 1397633, 2024.
Article de Anglais | MEDLINE | ID: mdl-39176081

RÉSUMÉ

Background: Unexplained recurrent pregnancy loss (URPL) is a clinical dilemma in reproductive fields. Its diagnosis is mainly exclusionary after extensive clinical examination, and some of the patients may still face the risk of miscarriage. Methods: We analyzed follicular fluid (FF) from in vitro fertilization (IVF) in eight patients with URPL without endocrine abnormalities or verifiable causes of abortion and eight secondary infertility controls with no history of pregnancy loss who had experienced at least one normal pregnancy and delivery by direct data-independent acquisition (dDIA) quantitative proteomics to identify differentially expressed proteins (DEPs). In this study, bioinformatics analysis was performed using online software including g:profiler, String, and ToppGene. Cytoscape was used to construct the protein-protein interaction (PPI) network, and ELISA was used for validation. Results: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs are involved in the biological processes (BP) of complement and coagulation cascades. Apolipoproteins (APOs) are key proteins in the PPI network. ELISA confirmed that APOB was low-expressed in both the FF and peripheral blood of URPL patients. Conclusion: Dysregulation of the immune network intersecting coagulation and inflammatory response is an essential feature of URPL, and this disequilibrium exists as early as the oogenesis stage. Therefore, earlier intervention is necessary to prevent the development of URPL. Moreover, aberrant lipoprotein regulation appears to be a key factor contributing to URPL. The mechanism by which these factors are involved in the complement and coagulation cascade pathways remains to be further investigated, which also provides new candidate targets for URPL treatment.


Sujet(s)
Avortements à répétition , Métabolisme lipidique , Ovogenèse , Protéomique , Humains , Femelle , Avortements à répétition/métabolisme , Avortements à répétition/génétique , Adulte , Protéomique/méthodes , Grossesse , Métabolisme lipidique/génétique , Ovogenèse/génétique , Cartes d'interactions protéiques , Liquide folliculaire/métabolisme , Biologie informatique/méthodes , Protéome , Fécondation in vitro
17.
Phys Med Biol ; 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39079556

RÉSUMÉ

Cancer has a high incidence and lethality rate, which is a significant threat to human health. With the development of high-throughput technologies, different types of cancer genomics data have been accumulated, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A comprehensive analysis of various omics data is needed to understand the underlying mechanisms of tumor development. However, integrating such a massive amount of data is one of the main challenges today. Artificial intelligence techniques such as machine learning are now becoming practical tools for analyzing and understanding multi-omics data on diseases. Enabling great optimization of existing research paradigms for cancer screening, diagnosis, and treatment. In addition, intelligent healthcare has received widespread attention with the development of healthcare informatization. As an essential part of innovative healthcare, practical, intelligent prognosis analysis and personalized treatment for cancer patients are also necessary. This paper introduces the advanced multi-omics data analysis technology in recent years, presents the cases and advantages of the combination of both omics data and artificial intelligence applied to cancer diseases, and finally briefly describes the challenges faced by multi-omics analysis and artificial intelligence at the current stage, aiming to provide new perspectives for oncology research and the possibility of personalized cancer treatment. .

18.
Bioact Mater ; 40: 244-260, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-38973990

RÉSUMÉ

Osteoid plays a crucial role in directing cell behavior and osteogenesis through its unique characteristics, including viscoelasticity and liquid crystal (LC) state. Thus, integrating osteoid-like features into 3D printing scaffolds proves to be a promising approach for personalized bone repair. Despite extensive research on viscoelasticity, the role of LC state in bone repair has been largely overlooked due to the scarcity of suitable LC materials. Moreover, the intricate interplay between LC state and viscoelasticity in osteogenesis remains poorly understood. Here, we developed innovative hydrogel scaffolds with osteoid-like LC state and viscoelasticity using digital light processing with a custom LC ink. By utilizing these LC scaffolds as 3D research models, we discovered that LC state mediates high protein clustering to expose accessible RGD motifs to trigger cell-protein interactions and osteogenic differentiation, while viscoelasticity operates via mechanotransduction pathways. Additionally, our investigation revealed a synergistic effect between LC state and viscoelasticity, amplifying cell-protein interactions and osteogenic mechanotransduction processes. Furthermore, the interesting mechanochromic response observed in the LC hydrogel scaffolds suggests their potential application in mechanosensing. Our findings shed light on the mechanisms and synergistic effects of LC state and viscoelasticity in osteoid on osteogenesis, offering valuable insights for the biomimetic design of bone repair scaffolds.

19.
Food Chem ; 458: 140329, 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38991239

RÉSUMÉ

Recently, fiber-based and functional paper food packaging has garnered significant attention for its versatility, excellent performance, and potential to provide sustainable solutions to the food packaging industry. Fiber-based food packaging is characterized by its large surface area, adjustable porosity and customizability, while functional paper-based food packaging typically exhibits good mechanical strength and barrier properties. This review summarizes the latest research progress on food packaging based on fibers and functional paper. Firstly, the raw materials used for preparing fiber and functional paper, along with their physical and chemical properties and roles in food packaging, were discussed. Subsequently, the latest advancements in the application of fiber and paper materials in food packaging were introduced. This paper also discusses future research directions and potential areas for improvement in fiber and functional paper food packaging to further enhance their effectiveness in ensuring food safety, quality, and sustainability.

20.
Langmuir ; 40(29): 15263-15270, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39001857

RÉSUMÉ

In this study, we examined how surface topography and particle medium interact to affect the tribological performance of rubber sliding interfaces, uncovering the mechanisms of particle lubrication under various conditions. We found that microtextured surfaces, created using a mold transfer method, modestly reduced the friction coefficient of rubber under both dry and lubricated states, primarily by altering the real contact area. Additionally, the presence of different microconvex textures on the surface topography significantly influenced rubber's tribological properties. Our three-dimensional morphological analysis revealed that microtextured rubber surfaces with higher Sa, Sku, and Sal and lower Str values consistently showed lower friction coefficients during sliding. The friction mechanism was attributed to the combined effects of the material properties, surface topography, and contact area. With the addition of a particle medium, the dry friction coefficient of the rubber interface decreased but exhibited an initial increase, followed by a decrease with increasing particle diameter. When particles were mixed with a water-based cutting fluid, the concentration, diameter, and wettability of the particles significantly impacted the tribological properties due to the synergistic effects of surface topography and particle lubrication. This work enhances our understanding of tribological control for viscoelastic materials through surface design, providing a theoretical basis for the tribological optimization of rubber surfaces.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE