Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 213
Filtrer
1.
Int J Biol Macromol ; 273(Pt 2): 133126, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38876243

RÉSUMÉ

Connective tissue is an important component of meat products that provides support to animal muscles. Hydrogels are considered a promising alternative to connective tissues and simulate actual products by adjusting the gel texture and mouthfeel. This study used soybean protein isolate (SPI), corn starch (CS), konjac glucomannan (KGM), and seaweed powder (SP) as raw materials to examine the effect of different added SP and KGM concentrations on the gel texture. The G' of the gel increased five-fold when the SP and KGM concentration was increased from 1 % to 3 %. The results of mechanical property tests showed that with the addition of SP, the gel hardness increased from 316.00 g to 1827.23 g and the tensile strength increased from 0.027 MPa to 0.089 MPa. Sensory evaluation showed that the samples with 2 % SP and KGM presented the highest overall acceptability score and the most significant similarity to real connective tissue. The connective tissue simulants exhibited excellent water-holding capacity (>90 %), significantly increasing their juiciness. SEM indicated that 2 % KGM addition improved gel network structure stability. The results demonstrate the potential of seaweed polysaccharide-derived hydrogels as connective tissue mimics. This provides a new strategy for the preparation of high mechanical strength hydrogels and lays the foundation for structural diversification of plant-based meat.


Sujet(s)
Tissu conjonctif , Hydrogels , Polyosides , Algue marine , Hydrogels/composition chimique , Polyosides/composition chimique , Tissu conjonctif/composition chimique , Algue marine/composition chimique , Résistance à la traction , Mannanes/composition chimique , Animaux
2.
Biochem Pharmacol ; : 116372, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38885773

RÉSUMÉ

MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.

3.
Article de Anglais | MEDLINE | ID: mdl-38863365

RÉSUMÉ

OBJECTIVES: Pseudomonas aeruginosa and Acinetobacter baumannii are ranked as top-priority organisms by WHO. Antimicrobial peptides (AMPs) are promising antimicrobial agents that are highly effective against serious bacterial infections. METHODS: In our previous study, a series of α-helical AMPs were screened using a novel multiple-descriptor strategy. The current research suggested that S24 exhibited strong antimicrobial activity against major pathogenic bacteria, and displayed minimal haemolysis, good serum stability and maintained salt resistance. RESULTS: We found that S24 exerted an antimicrobial effect by destroying outer membrane permeability and producing a strong binding effect on bacterial genomic DNA that inhibits genomic DNA migration. Furthermore, S24 exerted a strong ability to promote healing in wound infected by P. aeruginosa, A. baumannii and mixed strains in a mouse model. CONCLUSIONS: Overall, S24 showed good stability under physiological conditions and excellent antimicrobial activity, suggesting it may be a potential candidate for the development of serious bacterial infection treatment.

4.
Int J Biol Macromol ; 272(Pt 1): 132774, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38823735

RÉSUMÉ

Although emulsion gels show significant potential as fat substitutes, they are vulnerable to degreasing, delamination, and other undesirable processes during freezing, storage, and thawing, leading to commercial value loss in terms of juiciness, flavor, and texture. This study investigated the gel strength and freeze-thaw stability of soybean protein isolate (SPI)/curdlan (CL) composite emulsion gels after adding sodium chloride (NaCl). Analysis revealed that adding low salt ion concentrations promoted the hardness and water-holding capacity (WHC) of fat substitutes, while high levels displayed an inhibitory effect. With 40 mM NaCl as the optimum concentration, the hardness increased from 259.33 g (0 mM) to 418.67 g, the WHC increased from 90.59 % to 93.18 %, exhibiting good freeze-thaw stability. Confocal laser scanning microscopy (CLSM) and particle size distribution were used to examine the impact of salt ion concentrations on protein particle aggregation and the damaging effect of freezing and thawing on the proteoglycan complex network structure. Fourier-transform infrared spectroscopy (FTIR) and protein solubility evaluation indicated that the composite gel network structure consisted of covalent contacts between the proteoglycan molecules and hydrogen bonds, playing a predominant role in non-covalent interaction. This study showed that the salt ion concentration in the emulsion gel affected its molecular interactions.


Sujet(s)
Congélation , Protéines de soja , bêta-Glucanes , Protéines de soja/composition chimique , bêta-Glucanes/composition chimique , Émulsions/composition chimique , Chlorure de sodium/composition chimique , Solubilité , Ions/composition chimique , Eau/composition chimique , Gels/composition chimique
5.
Foods ; 13(12)2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38928772

RÉSUMÉ

Conjugated linoleic acid (CLA) is a class of naturally occurring octadecadienoic acid in humans and animals and is a general term for a group of conformational and positional isomers of linoleic acid. In order to obtain the development of excellent lactic acid strains with a high production of conjugated linoleic acid, 32 strains with a possible CLA conversion ability were obtained by initial screening using UV spectrophotometry, and then the strains were re-screened by gas chromatography, and finally, the strain with the highest CLA content was obtained. The strains were optimized for cultivation by changing the amount of substrate addition, inoculum amount, and fermentation time. The results showed that the yield of the experimentally optimized strain for the conversion of conjugated linoleic acid could reach 94.68 ± 3.57 µg/mL, which was 74.4% higher than the initial yield of 54.28 ± 2.12 µg/mL of the strain. The results of this study can provide some basis for the application of conjugated linoleic acid production by Lactobacillus paracasei in the fermentation of lactic acid bacteria.

6.
Acta Pharmacol Sin ; 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760544

RÉSUMÉ

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

7.
Small Methods ; : e2400517, 2024 May 19.
Article de Anglais | MEDLINE | ID: mdl-38763921

RÉSUMÉ

The defects have a remarkable influence on the electronic structures and the electric transport behaviors of the matter, providing the additional means to engineering their physical properties. In this work, a comprehensive study on the effect of Br-vacancies on the electronic structures and transport behaviors in the high-order topological insulator Bi4Br4 is performed by the combined techniques of the scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and physical properties measurement system along with the first-principle calculations. The STM results show the defects on the cleaved surface of a single crystal and reveal that the defects are correlated to the Br-vacancies with the support of the simulated STM images. The role of the Br-vacancies in the modulation of the band structures has been identified by ARPES spectra and the calculated energy-momentum dispersion. The relationship between the Br-vacancies and the semiconducting-like transport behaviors at low temperature has been established, implying a Mott variable ranging hopping conduction in Bi4Br4. The work not only resolves the unclear transport behaviors in this matter, but also paves a way to modulate the electric conduction path by the defects engineering.

8.
RSC Adv ; 14(22): 15542-15553, 2024 May 10.
Article de Anglais | MEDLINE | ID: mdl-38741956

RÉSUMÉ

Calcium homeostasis imbalance in the body can lead to a variety of chronic diseases. Supplement efficiency is essential. Peptide calcium chelate, a fourth-generation calcium supplement, offers easy absorption and minimal side effects. Its effectiveness relies on peptide's calcium binding capacity. However, research on amino acid sequences in peptides with high calcium binding capacity (HCBC) is limited, affecting the efficient identification of such peptides. This study used soybean peptides (SP), separated and purified by gel chromatography, to obtain HCBC peptide (137.45 µg mg-1) and normal peptide (≤95.78 µg mg-1). Mass spectrometry identified the sequences of these peptides, and an analysis of the positional distribution of characteristic amino acids followed. Two HCBC peptides with sequences GGDLVS (271.55 µg mg-1) and YEGVIL (272.54 µg mg-1) were discovered. Molecular dynamics showed that when either aspartic acid is located near the N-terminal's middle, or glutamic acid is near the end, or in cases of continuous Asp or Glu, the binding speed, probability, and strength between the peptide and calcium ions are superior compared to those at other locations. The study's goal was to clarify how the positions of characteristic amino acids in peptides affect calcium binding, aiding in developing peptide calcium chelates as a novel calcium supplement.

9.
BMC Public Health ; 24(1): 943, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38566183

RÉSUMÉ

BACKGROUND: Subjective well-being (SWB) is associated with social support in cross-sectional studies. However, it remains unclear whether and how social support predicts SWB longitudinally, especially during the COVID-19 contingency. METHODS: By adopting a prospective design, the current work addressed this research question in a sample of 594 participants from the U.K. The data were collected via the online platform, Prolific, at two time points (June, 2020 and August, 2021) with a 14-month interval. Descriptive analysis and a moderated mediation model were conducted to test the proposed hypotheses. RESULTS: Baseline social support was a significant predictor of subjective well-being (SWB) 14 months later, even after controlling for baseline SWB and other covariates such as personality traits. Additionally, affect balance (i.e., the affective component of SWB) fully mediated the link between baseline social support and subsequent life satisfaction (i.e., the cognitive component of SWB). Moreover, household income moderated this relationship, indicating a stronger mediation for individuals with lower monthly household income. CONCLUSION: The present work sheds light on the underlying mechanism and boundary condition of the association between social support and different components of SWB during the COVID-19 pandemic.


Sujet(s)
COVID-19 , Humains , COVID-19/épidémiologie , Études prospectives , Études transversales , Pandémies , Soutien social
10.
J Food Sci ; 89(5): 3048-3063, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38563092

RÉSUMÉ

Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.


Sujet(s)
Anti-inflammatoires , Antioxydants , Acide chlorogénique , Souris de lignée BALB C , Polyphénols , Saccharum , Vieillissement de la peau , Peau , Rayons ultraviolets , Animaux , Vieillissement de la peau/effets des médicaments et des substances chimiques , Vieillissement de la peau/effets des radiations , Polyphénols/pharmacologie , Souris , Rayons ultraviolets/effets indésirables , Antioxydants/pharmacologie , Saccharum/composition chimique , Peau/effets des radiations , Peau/effets des médicaments et des substances chimiques , Peau/métabolisme , Acide chlorogénique/pharmacologie , Glycosylation/effets des médicaments et des substances chimiques , Anti-inflammatoires/pharmacologie , Femelle , Extraits de plantes/pharmacologie , Malonaldéhyde/métabolisme , Superoxide dismutase/métabolisme
11.
Gels ; 10(4)2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38667656

RÉSUMÉ

Conjugation with glucose (G) and fructose (F) via the Maillard reaction under the wet-heating condition is a natural and non-toxic method of improving the technological functions of 7S/11S proteins in different kinds of gels. It may be used as an affordable supply of emulsifiers and an excellent encapsulating matrix for gels. This study aimed to create a glucose/fructose-conjugated 7S/11S soy protein via the Maillard reaction. The conjugation was confirmed by determining the SDS-PAGE profile and circular dichroism spectra. In addition, these conjugates were comprehensively characterized in terms of grafting degree, browning degree, sulfhydryl content, surface hydrophobicity (H0), and differential scanning calorimetry (DSC) through various reaction times (0, 24, 48, and 72 h) to evaluate their ability to be used in food gels. The functional characteristics of the 7S/11S isolate-G/F conjugate formed at 70 °C, with a high degree of glycosylation and browning, were superior to those obtained at other reaction times. The SDS-PAGE profile indicated that the conjugation between the 7S and 11S proteins and carbohydrate sources of G and F through the Maillard reaction occurred. Secondary structural results revealed that covalent interactions with G and F affected the secondary structural components of 7S/11S proteins, leading to increased random coils. When exposed to moist heating conditions, G and F have significant potential for protein alteration through the Maillard reaction. The results of this study may provide new insights into protein modification and establish the theoretical basis for the therapeutic application of both G and F conjugation with soy proteins in different food matrixes and gels.

12.
Ecotoxicol Environ Saf ; 276: 116311, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38615639

RÉSUMÉ

Prenatal environmental exposure could be an essential health risk factor associated with neurodevelopmental disorders in offspring. However, the exact mechanisms underlying the impact of prenatal PM2.5 exposure on offspring cognition remain unclear. In our recent study using a PM2.5 exposed pregnant mouse model, we observed significant synaptic dysfunction in the hippocampi of the offspring. Concurrently, the epigenetic regulator of KDM5A and the Shh signaling pathway exhibited decreased activities. Significantly, changes in hippocampal KDM5A and Shh levels directly correlated with PM2.5 exposure intensity. Subsequent experiments revealed a marked reduction in the expression of Shh signaling and related synaptic proteins when KDM5A was silenced in cells. Notably, the effects of KDM5A deficiency were reversed significantly with the supplementation of a Shh activator. Furthermore, our findings indicate that Shh activation significantly attenuates PM2.5-induced synaptic impairments in hippocampal neurons. We further demonstrated that EGR1, a transcriptional inhibitor, plays a direct role in KDM5A's regulation of the Shh pathway under conditions of PM2.5 exposure. Our results suggest that the KDM5A's inhibitory regulation on the Shh pathway through the EGR1 gene is a crucial epigenetic mechanism underlying the synaptic dysfunction in hippocampal neurons caused by maternal PM2.5 exposure. This emphasizes the role of epigenetic regulations in neurodevelopmental disorders caused by environmental factors.


Sujet(s)
Épigenèse génétique , Protéines Hedgehog , Hippocampe , Matière particulaire , Effets différés de l'exposition prénatale à des facteurs de risque , Transduction du signal , Hippocampe/effets des médicaments et des substances chimiques , Animaux , Femelle , Grossesse , Transduction du signal/effets des médicaments et des substances chimiques , Épigenèse génétique/effets des médicaments et des substances chimiques , Protéines Hedgehog/génétique , Protéines Hedgehog/métabolisme , Souris , Matière particulaire/toxicité , Protéine-2 de liaison à la protéine du rétinoblastome/génétique , Exposition maternelle/effets indésirables , Synapses/effets des médicaments et des substances chimiques , Polluants atmosphériques/toxicité
13.
J Colloid Interface Sci ; 667: 414-424, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38640660

RÉSUMÉ

The electrolysis of seawater for hydrogen production holds promise as a sustainable technology for energy generation. Developing water-splitting catalysts with low overpotential and stable operation in seawater is essential. In this study, we employed a hydrothermal method to synthesize NiMoWOX microrods (NiMoWOX@NF). Subsequently, an annealing process yielded a composite N-doped carbon-coated Ni3N/MoO2/WO2 nanorods (NC@Ni3N/MoO2/WO2@NF), preserving the ultrahigh-specific surface area of the original structure. A two-electrode electrolytic cell was assembled using NC@Ni3N/MoO2/WO2@NF as the cathode and NiMoWOX@NF as the anode, demonstrating exceptional performance in seawater splitting. The cell operated at a voltage of 1.51 V with a current density of 100 mA·cm-2 in an alkaline seawater solution. Furthermore, the NC@Ni3N/MoO2/WO2@NF || NiMoWOX@NF electrolytic cell exhibited remarkable stability, running continuously for over 120 h at a current of 1100 mA·cm-2 without any observable delay. These experimental results are corroborated by density functional theory calculations. The NC@Ni3N/MoO2/WO2@NF || NiMoWOX@NF electrolyzer emerges as a promising option for industrial-scale hydrogen production through seawater electrolysis.

14.
Article de Anglais | MEDLINE | ID: mdl-38530727

RÉSUMÉ

Single-view clothing reconstruction usually relies on topologically fixed clothing templates to reduce the problem complexity, but this strategy also makes the reconstructed clothing shape contours simple and lack diversity. In this paper, we propose a novel clothing reconstruction method to generate complex shape contours and open clothing mesh from a single image. At the heart of our work is an implicit unsigned distance field condition on clothing-oriented and pose-stable spatial shape features to represent the clothing from the image. This feature can provide spatially aligned clothing shape priors to improve the pose robustness. It is based on a type-generic clothing template derived from the mainstream clothing generative model to avoid tedious template design and switching. To output open clothing mesh results from noisy clothing unsigned distance fields, we develop a two-stage clothing mesh extraction method. It takes the point clouds as an intermediate representation and produces smooth, plausible and editable clothing mesh results. To provide effective supervision, we construct a pose-rich and shape-complete clothing scan dataset by enhancing clothing pose diversity and complementing missing clothing geometry caused by occlusion. Extensive experiments demonstrate that our method achieves state-of-the-art levels. More importantly, we provide a simple but effective, and low-cost way to reconstruct complex shape contours clothing from a single image.

15.
Animals (Basel) ; 14(6)2024 Mar 19.
Article de Anglais | MEDLINE | ID: mdl-38540043

RÉSUMÉ

N-carbamylglutamate (NCG) is postulated to improve fetal growth in nutrient-restricted gestations when supplemented from day 35 to 110 of gestation, but the effects of supplementation from 100 days of gestation to birth have not been evaluated. The aim of this study was to evaluate the effect of oral NCG supplementation from 100 days of gestation (dga) to term in naturally nutrient-restricted grazing twin-bearing ewes, on the maternal body weight (BW), body condition score (BCS), placental morphology, fetal body and organ weights and blood biochemistry and antioxidant status in the ewe and fetuses. Eighteen twin-bearing ewes maintained under grazing management were randomly allocated to either a treatment group (NCG; n = 10), orally dosed once daily with 60 mg/kg of NCG from day 100 until 140 dga, or an unsupplemented control group (CON; n = 8). At 140 dga, blood gases, redox status, maternal and fetal plasma and fetal biometrics were obtained after caesarian section. The serum concentration of NCG was increased 15-fold in the NCG ewes compared to the CON. No major effects on dam or fetal body weight nor on blood biochemistry or antioxidant parameters were observed. These results indicate that NCG supplementation in mid-to-late gestation to grazing ewes was unable to rescue the negative production effects of severe natural nutritional restriction on both the dam and fetuses.

16.
Medicine (Baltimore) ; 103(5): e35060, 2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38306564

RÉSUMÉ

BACKGROUND: Over the past 2 decades, population-based studies have shown an increased association between asthma and the risk of lung cancer. However, the causal links between these 2 conditions remain poorly understood. METHODS: We conducted a comprehensive search of various databases, including PubMed, Embase, Web of Science, and Cochrane Library, up until May 04, 2023. Only articles published in English were included in our study. We performed a meta-analysis using random-effects models to calculate the odds ratio (OR) and corresponding 95% confidence interval (CI). Subgroup analyses were conducted based on study design, gender, and histologic types. We also conducted a 2-sample Mendelian randomization (MR) using the genome-wide association study pooled data (408,422 people) published by the UK Biobank to explore further the potential causal relationship between asthma and lung cancer. RESULTS: Our meta-analysis reviewed 24 population-based cohort studies involving 1072,502 patients, revealing that asthma is significantly associated with an increased risk of lung cancer (OR = 1.29, 95% CI 1.19-1.38) in all individuals. Subgroup analysis showed a significantly higher risk of lung cancer in females with asthma (OR = 1.23, 95% CI 1.01-1.49). We found no significant association between asthma and lung adenocarcinoma (LUAD) (OR = 0.76, 95% CI 0.54-1.05), lung squamous carcinomas (LUSC) (OR = 1.09, 95% CI 0.79-1.50), or small-cell lung cancer (SCLC) (OR = 1.00, 95% CI 0.68-1.49). Interestingly, our MR analysis supported an increasing causality between asthma and lung cancer (OR = 1.11, 95% CI 1.04-1.17, P = .0008), specifically in those who ever smoker (OR = 1.09, 95% CI 1.01-1.16, P = .0173) and LUSC pathological type (OR = 1.15, 95% CI 1.05-1.26, P = .0038). CONCLUSION: Through meta-analysis, our study confirms that patients with asthma have a higher risk of developing lung cancer. Our MR study further support an increasing causal relationship between asthma and the risk of lung cancer, particularly in smokers and LUSC. Future studies examining the link between asthma and the risk of developing lung cancer should consider the bias of controlled and uncontrolled asthma.


Sujet(s)
Asthme , Carcinome pulmonaire non à petites cellules , Carcinome épidermoïde , Tumeurs du poumon , Femelle , Humains , Tumeurs du poumon/épidémiologie , Tumeurs du poumon/génétique , Analyse de randomisation mendélienne , Étude d'association pangénomique , Asthme/épidémiologie , Asthme/génétique , Études de cohortes , Poumon , Polymorphisme de nucléotide simple
17.
Article de Anglais | MEDLINE | ID: mdl-38324440

RÉSUMÉ

Recovering a user-special and controllable human model from a single RGB image is a nontrivial challenge. Existing methods usually generate static results with an image consistent subject's pose. Our work aspires to achieve pose-controllable human reconstruction from a single image by learning a dynamic (multi-pose) implicit field. We first construct a feature-embedded human model (FEHM) as a bridge to propagate image features to different pose spaces. Based on FEHM, we then encode three pose-decoupled features. Global image features represent user-specific shapes in images and replace widely used pixel-aligned ways to avoid unwanted shape-pose entanglement. Spatial color features propagate FEHM-embedded image cues into 3D pose space to provide spatial high-frequency guidance. Spatial geometry features improve reconstruction robustness by using the surface shape of the FEHM as the prior. Finally, new implicit functions are designed to predict the dynamic human implicit fields. For effective supervision, a realistic human avatar dataset, SimuSCAN, with 1000+ models is constructed using a low-cost hierarchical mesh registration method. Extensive experiments demonstrate that our method achieves the state-of-the-art reconstruction level.

18.
Gels ; 10(2)2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38391441

RÉSUMÉ

Composite emulsion gel can effectively mimic animal adipose tissue. In this study, composite emulsion gels composed of soy protein isolates and konjac glucomannan (KGM) were prepared as plant-based cubic fat substitutes (CFS). The effects of CFS on the quality and structure of pork patties were investigated in terms of the proximate composition, lipid oxidation stability, technological characteristics, color, sensory attributes, texture, thermo-rheological behavior, and microstructure. CFS samples composed of various ratios of KGM were added to lean meat patties to ascertain the optimal CFS composition for its potential replacement of pork back fat in patties. The addition of CFS containing 7.0% KGM was found to decrease the hardness of the lean meat patties by 71.98% while simultaneously improving their sensory quality. The replacement of pork back fat with CFS also reduced the fat content of the patties to as little as 3.65%. Furthermore, the addition of CFS enhanced the technological characteristics, lipid oxidation stability, and surface color of the fat-replaced patties, with no significant impact on their overall acceptability. The gel network of the patties was shown to be fine and remained compact as the fat replacement ratio increased to 75%, while the texture parameters, storage modulus, and fractal dimension all increased. Quality and structure improvements may allow the composite emulsion gels to replace fat in pork patties to support a healthy diet. This study may be beneficial for the application and development of plant-based cubic fat substitutes.

19.
Food Chem ; 446: 138780, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38402764

RÉSUMÉ

Soybean proteins (pro) and soybean peptides (pep) are beneficial to the growth and metabolism of Limosilactobacillus reuteri (L. reuteri). However, whether they could assist L. reuteri in inhibiting intestinal pathogens and the inhibition mode of them is still unclear. In this study, a co-culture experiment of L. reuteri LR08 with Escherichia coli JCM 1649 (E. coli) was performed. It showed that pro and pep could still favour the growth of L. reuteri over E. coli under their competition. The inhibition zone experiment showed the digested soybean proteins (dpro) could improve its antibacterial activity by increasing the secretion of organic acids from L. reuteri. Furthermore, digested soybean peptides (dpep) could enhance nitrogen utilization capacity of L. reuteri over E. coli. These results explained the patterns of dpro and dpep assisting L. reuteri in inhibiting the growth of E. coli by regulating its organic acid secretion and the ability of nitrogen utilization.


Sujet(s)
Limosilactobacillus reuteri , Escherichia coli , Protéines de soja/pharmacologie , Antibactériens/pharmacologie , Peptides/pharmacologie , Azote
20.
Curr Res Food Sci ; 8: 100662, 2024.
Article de Anglais | MEDLINE | ID: mdl-38188652

RÉSUMÉ

Soybean protein isolates and their hydrolysates are considered as one of the most high-quality proteins among plant proteins, and current research has shown that they have potential probiotic functions. The purpose of this study was to investigate the effects of digested soybean protein isolates (dSPI) and digested soybean peptides (dPEP) on L. plantarum K25 alone and the two bacteria when co-cultured with E. coli. It showed that dSPI and dPEP promoted the growth and metabolism of L. plantarum K25, and dSPI had a better effect. Besides, dSPI and dPEP still promoted the growth and organic acid secretion of L. plantarum K25 when co-cultured with E. coli, and the dPEP treatment was more effective than dSPI. Moreover, dSPI and dPEP reduced the survival rate of E. coli when co-cultured with L. plantarum K25. These results to some extent explained the cooperation of dSPI and dPEP with L. plantarum K25 to produce acid thereby weaken the growth of E. coli.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...