Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.250
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-38968403

RÉSUMÉ

A fundamental challenge in artificial superhydrophobic papers is their poor resistance to mechanical abrasion, which limits their practical application in different fields. Herein, a robust and multifunctional superhydrophobic paper is successfully fabricated via a facile spraying method by combining silver nanowires and fluorinated titania nanoparticles through a common paper sizing agent (alkyl ketene dimer) onto paper. It is shown that the surface of the paper-based material presents a three-dimensional network structure due to the cross-linking of silver nanowires with a high aspect ratio. Further hydrophilic and hydrophobic performance test results show that it exhibits exceptional water repellency, with a desirable static contact angle of 165° and roll-off angle of 6.2°. The superhydrophobic paper showcases excellent mechanical durability and maintains its superhydrophobicity even after enduring 130 linear sandpaper abrasion cycles or high-velocity water jetting impact benefited from interfacial van der Waals and hydrogen bonding. Simultaneously, the robust superhydrophobic surface can effectively prevent the penetration of acid or alkali solutions, as well as UV light, resulting in excellent chemical stability. Additionally, the superhydrophobic paper offers supplementary features such as self-cleaning, electrical conductivity, and antibacterial capability. Further development of this strategy paves a way toward next-generation superhydrophobic paper composed of nanostructures and characterized by multiple (or additional) functionalities.

2.
Brain ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963812

RÉSUMÉ

The medial prefrontal cortex (mPFC) has been implicated in the pathophysiology of social impairments including social fear. However, the precise subcortical partners that mediate mPFC dysfunction on social fear behaviour have not been identified. Employing a social fear conditioning paradigm, we induced robust social fear in mice and found that the lateral habenula (LHb) neurons and LHb-projecting mPFC neurons are synchronously activated during social fear expression. Moreover, optogenetic inhibition of the mPFC-LHb projection significantly reduced social fear responses. Importantly, consistent with animal studies, we observed an elevated prefrontal-habenular functional connectivity in subclinical individuals with higher social anxiety characterized by heightened social fear. These results unravel a crucial role of the prefrontal-habenular circuitry in social fear regulation and suggest that this pathway could serve as a potential target for the treatment of social fear symptom often observed in many psychiatric disorders.

3.
Heliyon ; 10(12): e32943, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38948032

RÉSUMÉ

Selecting A-share listed companies in Shanghai and Shenzhen, China, during the period of 2012-2021 as research subjects, this study examines the relationship and operational mechanisms between executive compensation and corporate ESG Ratings. It is found that executive compensation incentives can significantly enhance corporate ESG Ratings. This effect is achieved through promoting green innovation efficiency, enhancing environmental information disclosure, and improving financial performance. However, this positive impact weakens with an increase in management shareholding, but strengthens with a higher proportion of independent directors. When compensation exceeds appropriate levels, overcompensation leads to a decline in ESG Ratings. The significance of this study lies in revealing potential pathways for enhancing corporate sustainability through executive compensation incentives, while also emphasizing the importance of formulating appropriate compensation strategies.

4.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38921011

RÉSUMÉ

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

5.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38849323

RÉSUMÉ

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Sujet(s)
Antinéoplasiques , Protéines membranaires , Tumeurs , Brevets comme sujet , Humains , Animaux , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Antinéoplasiques/pharmacologie , Protéines membranaires/agonistes , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Immunité innée/effets des médicaments et des substances chimiques , Immunothérapie/méthodes
6.
Int J Cardiol ; 411: 132297, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38936429
7.
Acta Biomater ; 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38908417

RÉSUMÉ

Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".

8.
Int J Biol Macromol ; 273(Pt 2): 133139, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38878929

RÉSUMÉ

The microencapsulation of polysaturated fatty acids by spray drying remains a challenge due to their susceptibility to oxidation. In this work, antioxidant Pickering emulsions were attempted as feeds to produce oxidation stable tuna oil microcapsules. The results indicated that the association between chitosan (CS) and ovalbumin (OVA) was a feasible way to fabricate antioxidant and wettable complexes and a high CS percentage favored these properties. The particles could yield tuna oil Pickering emulsions with enhanced oxidation stability through high-pressure homogenization, which were successfully spray dried to produce microcapsules with surface oil content of 8.84 % and microencapsulation efficiency of 76.65 %. The microcapsules exhibited significantly improved oxidation stability and their optimum peroxide values after storage at 50 °C, 85 % relative humidity, or natural light for 15 d were 48.67 %, 60.07 %, and 39.69 % respectively lower than the powder derived from the OVA-stabilized emulsion. Hence, Pickering emulsions stabilized by the CS/OVA polyelectrolyte complexes are potential in the production of oxidation stable polyunsaturated fatty acid microcapsules by spray drying.


Sujet(s)
Capsules , Chitosane , Émulsions , Ovalbumine , Oxydoréduction , Séchage par pulvérisation , Thon , Chitosane/composition chimique , Émulsions/composition chimique , Ovalbumine/composition chimique , Animaux , Huiles de poisson/composition chimique , Polyélectrolytes/composition chimique , Antioxydants/composition chimique , Taille de particule
9.
mSystems ; : e0128923, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38837392

RÉSUMÉ

Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.

10.
Curr Drug Deliv ; 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38847256

RÉSUMÉ

PURPOSE: Reproducibility and scale-up production of microspheres through spray drying present significant challenges. In this study, biodegradable microspheres of Triamcinolone Acetonide Acetate (TAA) were prepared using a novel static mixing method by employing poly( lactic-co-glycolic acid) (PLGA) as the sustained-release carrier. METHODS: TAA-loaded microspheres (TAA-MSs) were prepared using a static mixing technique. The PLGA concentration, polyvinyl alcohol concentration (PVA), phase ratio of oil/water, and phase ratio of water/solidification were optimized in terms of the particle size, drug loading (DL), and encapsulation efficiency (EE) of TAA-MSs. The morphology of TAA-MSs was examined using Scanning Electron Microscopy (SEM), while the physicochemical properties were evaluated through X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FT-IR). The in vitro release of TAA-MSs was compared to that of the pure drug (TAA) using a water-bath vibration method in the medium of pH 7.4 at 37°C. RESULTS: The formulation composition and preparation condition for the preparation of TAA-MSs were optimized as follows: the PLGA concentration was 1%, the phase ratio of oil(dichloromethane) /water (PVA solution) was 1:3, the phase ratio of water (PVA solution)/solidification was 1:2. The optimized TAA-MSs displayed spherical particles with a size range of 30-70 µm, and DL and EE values of 27.09% and 98.67%, respectively. Moreover, the drug-loaded microspheres exhibited a significant, sustained release, with 20% of the drug released over a period of 28 days. The XRD result indicated that the crystalline form of TAA in microspheres had been partly converted into the amorphous form. DSC and FT-IR results revealed that some interactions between TAA and PLGA occurred, indicating that the drug was effectively encapsulated into PLGA microspheres. CONCLUSION: TAA-loaded PLGA microspheres have been successfully prepared via the static mixing technique with enhanced EE and sustained-release manner.

11.
J Magn Reson Imaging ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886922

RÉSUMÉ

BACKGROUND: Restriction spectrum imaging (RSI), as an advanced quantitative diffusion-weighted magnetic resonance imaging technique, has the potential to distinguish primary benign and malignant lung lesions. OBJECTIVE: To explore how well the tri-compartmental RSI performs in distinguishing primary benign from malignant lung lesions compared with diffusion-weighted imaging (DWI), and to further explore whether positron emission tomography/magnetic resonance imaging (PET/MRI) can improve diagnostic efficacy. STUDY TYPE: Prospective. POPULATION: 137 patients, including 108 malignant and 29 benign lesions (85 males, 52 females; average age = 60.0 ± 10.0 years). FIELD STRENGTH/SEQUENCE: T2WI, T1WI, multi-b value DWI, MR-based attenuation correction, and PET imaging on a 3.0 T whole-body PET/MR system. ASSESSMENT: The apparent diffusion coefficient (ADC), RSI-derived parameters (restricted diffusion f 1 $$ {f}_1 $$ , hindered diffusion f 2 $$ {f}_2 $$ , and free diffusion f 3 $$ {f}_3 $$ ) and the maximum standardized uptake value (SUVmax) were calculated and analyzed for diagnostic efficacy individually or in combination. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, receiver operating characteristic (ROC) curves, Delong test, Spearman's correlation analysis. P < 0.05 was considered statistically significant. RESULTS: The f 1 $$ {f}_1 $$ , SUVmax were significantly higher, and f 3 $$ {f}_3 $$ , ADC were significantly lower in the malignant group [0.717 ± 0.131, 9.125 (5.753, 13.058), 0.194 ± 0.099, 1.240 (0.972, 1.407)] compared to the benign group [0.504 ± 0.236, 3.390 (1.673, 6.030), 0.398 ± 0.195, 1.485 ± 0.382]. The area under the ROC curve (AUC) values ranked from highest to lowest as follows: AUC (SUVmax) > AUC ( f 3 $$ {f}_3 $$ ) > AUC ( f 1 $$ {f}_1 $$ ) > AUC (ADC) > AUC ( f 2 $$ {f}_2 $$ ) (AUC = 0.819, 0.811, 0.770, 0.745, 0549). The AUC (AUC = 0.900) of the combined model of RSI with PET was significantly higher than that of either single-modality imaging. CONCLUSION: RSI-derived parameters ( f 1 $$ {f}_1 $$ , f 3 $$ {f}_3 $$ ) might help to distinguish primary benign and malignant lung lesions and the discriminatory utility of f 2 $$ {f}_2 $$ was not observed. The RSI exhibits comparable or potentially enhanced performance compared with DWI, and the combined RSI and PET model might improve diagnostic efficacy. TECHNICAL EFFICACY: Stage 2.

12.
Animals (Basel) ; 14(11)2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38891682

RÉSUMÉ

Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.

13.
Acta Pharm Sin B ; 14(6): 2361-2377, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38828136

RÉSUMÉ

T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.

14.
Chem Sci ; 15(22): 8311-8322, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38846391

RÉSUMÉ

Drug resistance in tumor cells remains a persistent clinical challenge in the pursuit of effective anticancer therapy. XIAP, a member of the inhibitor of apoptosis protein (IAP) family, suppresses apoptosis via its Baculovirus IAP Repeat (BIR) domains and is responsible for drug resistance in various human cancers. Therefore, XIAP has attracted significant attention as a potential therapeutic target. However, no XIAP inhibitor is available for clinical use to date. In this study, we surprisingly observed that arsenic trioxide (ATO) induced a rapid depletion of XIAP in different cancer cells. Mechanistic studies revealed that arsenic attacked the cysteine residues of BIR domains and directly bound to XIAP, resulting in the release of zinc ions from this protein. Arsenic-XIAP binding suppressed the normal anti-apoptosis functions of BIR domains, and led to the ubiquitination-dependent degradation of XIAP. Importantly, we further demonstrate that arsenic sensitized a variety of apoptosis-resistant cancer cells, including patient-derived colon cancer organoids, to the chemotherapy drug using cisplatin as a showcase. These findings suggest that targeting XIAP with ATO offers an attractive strategy for combating apoptosis-resistant cancers in clinical practice.

15.
Int J Nanomedicine ; 19: 5071-5094, 2024.
Article de Anglais | MEDLINE | ID: mdl-38846644

RÉSUMÉ

Background: The commercial docetaxel (DTX) formulation causes severe side effects due to polysorbate 80 and ethanol. Novel surfactant-free nanoparticle (NP) systems are needed to improve bioavailability and reduce side effects. However, controlling the particle size and stability of NPs and improving the batch-to-batch variation are the major challenges. Methods: DTX-loaded bovine serum albumin nanoparticles (DTX-BSA-NPs) were prepared by a novel thermal-driven self-assembly/microfluidic technology. Single-factor analysis and orthogonal test were conducted to obtain the optimal formulation of DTX-BSA-NPs in terms of particle size, encapsulation efficiency (EE), and drug loading (DL). The effects of oil/water flow rate and pump pressure on the particle size, EE, and DL were investigated to optimize the preparation process of DTX-BSA-NPs. The drug release, physicochemical properties, stability, and pharmacokinetics of NPs were evaluated. Results: The optimized DTX-BSA-NPs were uniform, with a particle size of 118.30 nm, EE of 89.04%, and DL of 8.27%. They showed a sustained release of 70% over 96 hours and an increased stability. There were some interactions between the drug and excipients in DTX-BSA-NPs. The half-life, mean residence time, and area under the curve (AUC) of DTX-BSA-NPs increased, but plasma clearance decreased when compared with DTX. Conclusion: The thermal-driven self-assembly/microfluidic combination method effectively produces BSA-based NPs that improve the bioavailability and stability of DTX, offering a promising alternative to traditional formulations.


Sujet(s)
Biodisponibilité , Docetaxel , Stabilité de médicament , Nanoparticules , Taille de particule , Sérumalbumine bovine , Docetaxel/pharmacocinétique , Docetaxel/composition chimique , Docetaxel/administration et posologie , Animaux , Sérumalbumine bovine/composition chimique , Sérumalbumine bovine/pharmacocinétique , Sérumalbumine bovine/administration et posologie , Nanoparticules/composition chimique , Taxoïdes/pharmacocinétique , Taxoïdes/composition chimique , Taxoïdes/administration et posologie , Antinéoplasiques/pharmacocinétique , Antinéoplasiques/composition chimique , Antinéoplasiques/administration et posologie , Libération de médicament , Vecteurs de médicaments/composition chimique , Vecteurs de médicaments/pharmacocinétique , Rat Sprague-Dawley , Mâle , Préparation de médicament/méthodes , Rats
16.
Integr Med Res ; 13(2): 101045, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38831890

RÉSUMÉ

Background: Post-viral olfactory dysfunction (PVOD) is the common symptoms of long COVID, lacking of effective treatments. Traditional Chinese medicine (TCM) is claimed to be effective in treating olfactory dysfunction, but the evidence has not yet been critically appraised. We conducted a systematic review to evaluate the effectiveness and safety of TCM for PVOD. Methods: We searched eight databases to identified clinical controlled studies about TCM for PVOD. The Cochrane risk of bias tools and GRADE were used to evaluate the quality of evidence. Risk ratio (RR), mean differences (MD), and 95 % confidence interval (CI), were used for effect estimation and RevMan 5.4.1 was used for data analysis. Results: Six randomized controlled trials (RCTs) (545 participants), two non-randomized controlled trials (non-RCTs) (112 participants), and one retrospective cohort study (30 participants) were included. The overall quality of included studies was low. Acupuncture (n = 8) and acupoint injection (n = 3) were the mainly used TCM therapies. Five RCTs showed a better effect in TCM group. Four trials used acupuncture, and three trials used acupoint injection. The results of two non-RCTs and one cohort study were not statistically significant. Two trials reported mild to moderate adverse events (pain and brief syncope caused by acupuncture or acupoint injection). Conclusions: Limited evidence focus on acupuncture and acupoint injection for PVOD and suggests that acupuncture and acupoint injection may be effective in improving PVOD. More well-designed trials should focus on acupuncture to confirm the benefit. Protocol registration: The protocol of this review was registered at PROSPERO: CRD42022366776.

17.
Anal Chem ; 96(25): 10332-10340, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38865206

RÉSUMÉ

The neurofilament protein light chain (NEFL) is a potential biomarker of neurodegenerative diseases, and interleukin-6 (IL-6) is also closely related to neuroinflammation. Especially, NEFL and IL-6 are the two most low-abundance known protein markers of neurological diseases, making their detection very important for the early diagnosis and prognosis prediction of such kinds of diseases. Nevertheless, quantitative detection of low concentrations of NEFL and IL-6 in serum remains quite difficult, especially in the point-of-care test (POCT). Herein, we developed a portable, sensitive electrochemical biosensor combined with smartphones that can be applied to multiple scenarios for the quantitative detection of NEFL and IL-6, meeting the need of the POCT. We used a double-antibody sandwich configuration combined with polyenzyme-catalyzed signal amplification to improve the sensitivity of the biosensor for the detection of NEFL and IL-6 in sera. We could detect NEFL as low as 5.22 pg/mL and IL-6 as low as 3.69 pg/mL of 6 µL of serum within 2 h, demonstrating that this electrochemical biosensor worked well with serum systems. Results also showed its superior detection capabilities over those of high-sensitivity ELISA for serum samples. Importantly, by detecting NEFL and IL-6 in sera, the biosensor showed its potential for the POCT model detection of all known biomarkers of neurological diseases, making it possible for the mass screening of patients with neurodegenerative diseases.


Sujet(s)
Marqueurs biologiques , Techniques de biocapteur , Techniques électrochimiques , Interleukine-6 , Techniques de biocapteur/méthodes , Humains , Marqueurs biologiques/sang , Marqueurs biologiques/analyse , Interleukine-6/sang , Interleukine-6/analyse , Analyse sur le lieu d'intervention , Protéines neurofilamenteuses/sang , Maladies du système nerveux/diagnostic , Maladies du système nerveux/sang , Limite de détection , Ordiphone
18.
Front Pharmacol ; 15: 1383831, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863976

RÉSUMÉ

Background: The COVID-19 pandemic has had a profound global impact, although the majority of recently infected cases have presented with mild to moderate symptoms. Previous clinical studies have demonstrated that Shufeng Jiedu (SFJD) capsule, a Chinese herbal patent medicine, effectively alleviates symptoms associated with the common cold, H1N1 influenza, and COVID-19. This study aimed to assess the efficacy and safety of SFJD capsules in managing symptoms of mild to moderate COVID-19 infection. Methods: A randomized, double-blind, placebo-controlled trial was conducted from May to December 2022 at two hospitals in China. Mild and moderate COVID-19-infected patients presenting respiratory symptoms within 3 days from onset were randomly assigned to either the SFJD or placebo groups in a 1:1 ratio. Individuals received SFJD capsules or a placebo three times daily for five consecutive days. Participants were followed up for more than 14 days after their RT-PCR nucleoid acid test for SARS-CoV-2 turned negative. The primary outcome measure was time to alleviate COVID-19 symptoms from baseline until the end of follow-up. Results: A total of 478 participants were screened; ultimately, 407 completed the trial after randomization (SFJD, n = 203; placebo, n = 204). No statistically significant difference in baseline parameters was observed between the two groups. The median time to alleviate all symptoms was 7 days in the SFJD group compared to 8 days in the placebo group (p = 0.037). Notably, the SFJD group significantly attenuated fever/chills (p = 0.04) and headache (p = 0.016) compared to the placebo group. Furthermore, the median time taken to reach normal body temperature within 24 h was reduced by 7 hours in the SFJD group compared to the placebo group (p = 0.033). No deaths or instances of serious or critical conditions occurred during this trial period; moreover, no serious adverse events were reported. Conclusion: The trial was conducted in a unique controlled hospital setting, and the 5-day treatment with SFJD capsules resulted in a 1-day reduction in overall symptoms, particularly headache and fever/chills, among COVID-19-infected participants with mild or moderate symptoms. Compared to placebo, SFJD capsules were found to be safe with fewer side effects. SFJD capsules could potentially serve as an effective treatment for alleviating mild to moderate symptoms of COVID-19. Clinical Trial Registration: https://www.isrctn.com/, identifier ISRCTN14236594.

19.
Org Lett ; 26(23): 4986-4991, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38842488

RÉSUMÉ

We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.

20.
Toxicol In Vitro ; 99: 105867, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38848824

RÉSUMÉ

Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3ß signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...