Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
An Acad Bras Cienc ; 94(suppl 1): e20210814, 2022.
Article de Anglais | MEDLINE | ID: mdl-35442301

RÉSUMÉ

Benthic cyanobacterial assemblages from ponds distributed along inland-coastal gradients in the McMurdo Sound region were studied during the 2011/12 Antarctic summer season. Twenty-five ponds were sampled in four distinct geographic locations, including the Lower and Upper Wright Valleys, Ross Island and the McMurdo Ice Shelf. For morphological identification, benthic mat samples were thawed and a subsample was directly observed by light microscopy. Remaining sample material was stored in 50 ml sterile polycarbonate bottles containing the mineral nutrient medium MLA for future studies, maintained at a temperature of 21°C. Ten morphological criteria were used to describe the morphotypes (trichome shape, number of trichomes in sheath, presence or absence of terminal attenuation of trichome, calyptra on mature apical cell, shape of apical cell, presence or absence of constrictions at transverse walls, granules, branching, range in width of trichomes and range of cell length) with reference to available identification literature. All morphospecies were documented using photomicrography. In total, 29 morphospecies were described, four assigned to the order Chroococcales, three to Nostocales and 22 to Oscillatoriales. The four geographic locations had similar taxonomic richness, sharing many morphospecies. However, each also contained distinct floristic elements that were rare or absent from the others.


Sujet(s)
Cyanobactéries , Étangs , Régions antarctiques
2.
Ecotoxicology ; 28(8): 1009-1021, 2019 Oct.
Article de Anglais | MEDLINE | ID: mdl-31471822

RÉSUMÉ

In this study, two cyanobacterial strains (morphologically identified as Microcystis novacekii BA005 and Nostoc paludosum BA033) were exposed to different Mn concentrations: 7.0, 10.5, 15.7, 23.6 and 35.4 mg L-1 for BA005; and 15.0, 22.5, 33.7, 50.6, and 76.0 mg L-1 for BA033. Manganese toxicity was assessed by growth rate inhibition (EC50), chlorophyll a content, quantification of Mn accumulation in biomass and monitoring morphological and ultrastructural effects. The Mn EC50 values were 16 mg L-1 for BA005 and 39 mg L-1 for BA033, respectively. Reduction of chlorophyll a contents and ultrastructural changes were observed in cells exposed to Mn concentrations greater than 23.6 and 33.7 mg L-1 for BA005 and BA033. Damage to intrathylakoid spaces, increased amounts of polyphosphate granules and an increased number of carboxysomes were observed in both strains. In the context of the potential application of these strains in bioremediation approaches, BA005 was able to remove Mn almost completely from aqueous medium after 96 h exposure to an initial concentration of 10.5 mg L-1, and BA033 was capable of removing 38% when exposed to initial Mn concentration of 22.5 mg L-1. Our data shed light on how these cyanobacterial strains respond to Mn stress, as well as supporting their utility as organisms for monitoring Mn toxicity in industrial wastes and potential bioremediation application.


Sujet(s)
Manganèse/effets indésirables , Microcystis/effets des médicaments et des substances chimiques , Nostoc/effets des médicaments et des substances chimiques , Polluants chimiques de l'eau/effets indésirables , Dépollution biologique de l'environnement , Microcystis/physiologie , Microcystis/ultrastructure , Microscopie électronique à transmission , Nostoc/physiologie , Nostoc/ultrastructure , Thylacoïdes/effets des médicaments et des substances chimiques , Thylacoïdes/ultrastructure
3.
Int J Syst Evol Microbiol ; 68(9): 2770-2782, 2018 Sep.
Article de Anglais | MEDLINE | ID: mdl-29985124

RÉSUMÉ

Cyanobacteria is an ancient phylum of oxygenic photosynthetic microorganisms found in almost all environments of Earth. In recent years, the taxonomic placement of some cyanobacterial strains, including those belonging to the genus Nostocsensu lato, have been reevaluated by means of a polyphasic approach. Thus, 16S rRNA gene phylogeny and 16S-23S internal transcribed spacer (ITS) secondary structures coupled with morphological, ecological and physiological data are considered powerful tools for a better taxonomic and systematics resolution, leading to the description of novel genera and species. Additionally, underexplored and harsh environments, such as saline-alkaline lakes, have received special attention given they can be a source of novel cyanobacterial taxa. Here, a filamentous heterocytous strain, Nostocaceae CCM-UFV059, isolated from Laguna Amarga, Chile, was characterized applying the polyphasic approach; its fatty acid profile and physiological responses to salt (NaCl) were also determined. Morphologically, this strain was related to morphotypes of the Nostocsensu lato group, being phylogenetically placed into the typical cluster of the genus Desmonostoc. CCM-UFV059 showed identity of the 16S rRNA gene as well as 16S-23S secondary structures that did not match those from known described species of the genus Desmonostoc, as well as distinct ecological and physiological traits. Taken together, these data allowed the description of the first strain of a member of the genus Desmonostoc from a saline-alkaline lake, named Desmonostoc salinum sp. nov., under the provisions of the International Code of Nomenclature for algae, fungi and plants. This finding extends the ecological coverage of the genus Desmonostoc, contributing to a better understanding of cyanobacterial diversity and systematics.


Sujet(s)
Cyanobactéries/classification , Lacs/microbiologie , Phylogenèse , Salinité , Alcalis , Techniques de typage bactérien , Chili , Cyanobactéries/génétique , Cyanobactéries/isolement et purification , ADN bactérien/génétique , Espaceur de l'ADN ribosomique/génétique , Acides gras/composition chimique , Concentration en ions d'hydrogène , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE