Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Appl Physiol (1985) ; 136(6): 1364-1375, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38572540

RÉSUMÉ

Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.


Sujet(s)
Pression sanguine , Basse température , Études croisées , Nitrates , Humains , Mâle , Nitrates/administration et posologie , Nitrates/sang , Pression sanguine/effets des médicaments et des substances chimiques , Pression sanguine/physiologie , Méthode en double aveugle , Adulte , Jeune adulte , Nitrites/sang , Monoxyde d'azote/métabolisme , Compléments alimentaires , Beta vulgaris , Température cutanée/effets des médicaments et des substances chimiques , Température cutanée/physiologie , Jus de fruits et de légumes
2.
Nitric Oxide ; 134-135: 10-16, 2023 05 01.
Article de Anglais | MEDLINE | ID: mdl-36889537

RÉSUMÉ

Acute dietary nitrate (NO3-) supplementation can increase [NO3-], but not nitrite ([NO2-]), in human skeletal muscle, though its effect on [NO3-] and [NO2-] in skin remains unknown. In an independent group design, 11 young adults ingested 140 mL of NO3--rich beetroot juice (BR; 9.6 mmol NO3-), and 6 young adults ingested 140 mL of a NO3--depleted placebo (PL). Skin dialysate, acquired through intradermal microdialysis, and venous blood samples were collected at baseline and every hour post-ingestion up to 4 h to assess dialysate and plasma [NO3-] and [NO2-]. The relative recovery rate of NO3- and NO2- through the microdialysis probe (73.1% and 62.8%), determined in a separate experiment, was used to estimate skin interstitial [NO3-] and [NO2-]. Baseline [NO3-] was lower, whereas baseline [NO2-] was higher in the skin interstitial fluid relative to plasma (both P < 0.001). Acute BR ingestion increased [NO3-] and [NO2-] in the skin interstitial fluid and plasma (all P < 0.001), with the magnitude being smaller in the skin interstitial fluid (e.g., 183 ± 54 vs. 491 ± 62 µM for Δ[NO3-] from baseline and 155 ± 190 vs. 217 ± 204 nM for Δ[NO2-] from baseline at 3 h post BR ingestion, both P ≤ 0.037). However, due to the aforementioned baseline differences, skin interstitial fluid [NO2-] post BR ingestion was higher, whereas [NO3-] was lower relative to plasma (all P < 0.001). These findings extend our understanding of NO3- and NO2- distribution at rest and indicate that acute BR supplementation increases [NO3-] and [NO2-] in human skin interstitial fluid.


Sujet(s)
Beta vulgaris , Nitrates , Jeune adulte , Humains , Liquide extracellulaire , Dioxyde d'azote , Pression sanguine , Nitrites , Compléments alimentaires , Solutions de dialyse/pharmacologie , Études croisées , Méthode en double aveugle
4.
Ergonomics ; 66(10): 1449-1464, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-36445933

RÉSUMÉ

The clothing fabric and skin interact continuously across the many regions of users' bodies during wear, which can lead to both physical skin damage and discomfort. Therefore, this investigation aimed to explore the regional differences in skin friction, tactile perception, and sensitivity in both females and males during the skin-textile interaction. The static and dynamic friction coefficient and textile perception (texture, stickiness, pleasantness, and discomfort) were measured across the 36 selected testing body areas by using a friction measurement device. The results revealed there was a significant difference in skin friction, tactile perceptions, and sensitivity across the various body regions. The anterior neck had the highest skin friction in both females and males, and participants generally rated higher texture perception in their anterior aspects compared to posterior and lateral regions. There was no significant difference in skin friction, tactile perception ratings, and sensitivity between females and males. Practitioner summary: This study sought to examine regional variations in skin friction, tactile perception, and sensitivity during the skin-textile interaction. There was a significant difference in skin friction, tactile perceptions, and sensitivity across the various body regions and no significant sex effect on skin friction, tactile perception ratings, and sensitivity.


Sujet(s)
Peau , Perception du toucher , Mâle , Femelle , Humains , Friction , Toucher , Textiles
5.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R102-R108, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-36440900

RÉSUMÉ

This investigation assessed the physiological effects of voluntary suppression of shivering thermogenesis in response to whole body cooling. Eleven healthy volunteers underwent passive air cooling (10°C), across three visits: NO_SUP, where participants allowed their body to freely regulate against the cold; FULL_SUP, where participants constantly suppressed shivering; INT_SUP, where participants intermittently suppressed shivering (5 min phases), interspersed with 5 min free regulation. Shivering was assessed via electromyography (EMG), mechanomyography (MMG), and whole body oxygen uptake (V̇o2), whereas body temperature and heat exchange were assessed via skin temperature, rectal temperature, and heat flux sensors. A 29% increase was observed in shivering onset time in the FULL_SUP trial compared with NO_SUP (P = 0.032). Assessing shivering intensity, EMG activity decreased by 29% (P = 0.034), MMG activity decreased by 35% (P = 0.031), whereas no difference was observed in V̇o2 (P = 0.091) in the FULL_SUP trial compared with NO_SUP. Partitioning the no-suppression and suppression phases of the INT_SUP trial, acute voluntary suppression significantly decreased V̇o2 (P = 0.001), EMG (P < 0.001), and MMG (P = 0.012) activity compared with the no-suppression phases. Shivering activity was restored in the no-suppression phases, equivalent to that in the NO_SUP trial (P > 0.3). No difference was observed in thermal metrics between conditions up to 60 min (P > 0.4). Humans can both constantly and periodically suppress shivering activity, leading to a delay in shivering onset and a reduction in shivering intensity. Following suppression, regular shivering is resumed.


Sujet(s)
Basse température , Frissonnement , Humains , Frissonnement/physiologie , Thermogenèse/physiologie , Température du corps/physiologie , Température cutanée , Régulation de la température corporelle/physiologie
6.
Eur J Appl Physiol ; 121(7): 1943-1954, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-33765169

RÉSUMÉ

PURPOSE: To assess five theoretical foundations underlying thermosensory testing using local thermal stimuli. METHODS: Thermal sensation, discomfort and the confidence of thermal sensation scores were measured in 9 female and 8 male volunteers in response to 17 physical contact temperature stimuli, ranging between 18-42 °C. These were applied to their dorsal forearm and lateral torso, across two sessions. RESULTS: Thermal sensation to physical temperature relationships followed a positive linear and sigmoidal fit at both forearm (r2 = 0.91/r2 = 0.91, respectively) and lateral torso (r2 = 0.90/ r2 = 0.91, respectively). Thermal discomfort to physical temperature relationships followed second and third-order fits at both forearm (r2 = 0.33/r2 = 0.34, respectively) and lateral torso (r2 = 0.38/r2 = 0.39, respectively) test sites. There were no sex-related or regional site differences in thermal sensation and discomfort across a wide range of physical contact temperatures. The median confidence of an individual's thermal sensation rating was measured at 86%. CONCLUSION: The relation between thermal sensation and physical contact temperature was well described by both linear and sigmoidal models, i.e., the distance between the thermal sensation anchors is close to equal in terms of physical temperatures changes for the range studied. Participants rated similar thermal discomfort level in both cold and hot thermal stimuli for a given increase or decrease in physical contact temperature or thermal sensation. The confidence of thermal sensation rating did not depend on physical contact temperature.


Sujet(s)
Température cutanée/physiologie , Thermoception/physiologie , Femelle , Volontaires sains , Humains , Mâle , Jeune adulte
7.
Eur J Appl Physiol ; 121(4): 1207-1218, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33558988

RÉSUMÉ

PURPOSE: This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. METHOD: Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. RESULT: Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. CONCLUSION: These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.


Sujet(s)
Hypoxie/physiopathologie , Nitrates/pharmacologie , Frissonnement/effets des médicaments et des substances chimiques , Administration par voie orale , Adulte , Température du corps , Basse température , Humains , Mâle , Microcirculation , Nitrates/administration et posologie , Frissonnement/physiologie , Peau/vascularisation , Vasoconstriction
8.
Front Physiol ; 11: 541483, 2020.
Article de Anglais | MEDLINE | ID: mdl-33013476

RÉSUMÉ

BACKGROUND: Extreme heat events are increasing in frequency, severity, and duration. It is well known that heat stress can have a negative impact on occupational health and productivity, particularly during physical work. However, there are no up-to-date reviews on how vulnerability to heat changes as a function of individual characteristics in relation to the risk of hyperthermia and work capacity loss. The objective of this narrative review is to examine the role of individual characteristics on the human heat stress response, specifically in relation to hyperthermia risk and productivity loss in hot workplaces. Finally, we aim to generate practical guidance for industrial hygienists considering our findings. Factors included in the analysis were body mass, body surface area to mass ratio, body fat, aerobic fitness and training, heat adaptation, aging, sex, and chronic health conditions. FINDINGS: We found the relevance of any factor to be dynamic, based on the work-type (fixed pace or relative to fitness level), work intensity (low, moderate, or heavy work), climate type (humidity, clothing vapor resistance), and variable of interest (risk of hyperthermia or likelihood of productivity loss). Heat adaptation, high aerobic fitness, and having a large body mass are the most protective factors during heat exposure. Primary detrimental factors include low fitness, low body mass, and lack of heat adaptation. Aging beyond 50 years, being female, and diabetes are less impactful negative factors, since their independent effect is quite small in well matched participants. Skin surface area to mass ratio, body composition, hypertension, and cardiovascular disease are not strong independent predictors of the heat stress response. CONCLUSION: Understanding how individual factors impact responses to heat stress is necessary for the prediction of heat wave impacts on occupational health and work capacity. The recommendations provided in this report could be utilized to help curtail hyperthermia risk and productivity losses induced by heat.

9.
J Appl Physiol (1985) ; 129(4): 947-956, 2020 10 01.
Article de Anglais | MEDLINE | ID: mdl-32881624

RÉSUMÉ

Hypoxic modulation of nitric oxide (NO) production pathways in the cutaneous microvasculature and its interaction with cold-induced reflex vasoconstriction, independent of local cooling, have yet to be identified. This study assessed the contribution of NO to nonglabrous microvasculature perfusion during hypoxia and whole body cooling with concomitant inhibition of NO synthase [NOS; via NG-nitro-l-arginine methyl ester (l-NAME)] and the nitrite reductase, xanthine oxidase (via allopurinol), two primary sources of NO production. Thirteen volunteers were exposed to independent and combined cooling via water-perfused suit (5°C) and normobaric hypoxia ([Formula: see text], 0.109 ± 0.002). Cutaneous vascular conductance (CVC) was assessed across four sites with intradermal microdialysis perfusion of 1) lactated Ringers solution (control), 2) 20 mmol l-NAME, 3) 10 µmol allopurinol, or 4) combined l-NAME/allopurinol. Effects and interactions were assessed via four-way repeated measures ANOVA. Independently, l-NAME reduced CVC (43%, P < 0.001), whereas allopurinol did not alter CVC (P = 0.5). Cooling decreased CVC (P = 0.001), and the reduction in CVC was consistent across perfusates (~30%, P = 0.9). Hypoxia increased CVC (16%, P = 0.01), with this effect abolished by l-NAME infusion (P = 0.04). Cold-induced vasoconstriction was blunted by hypoxia, but importantly, hypoxia increased CVC to a similar extent (39% at the Ringer site) irrespective of environmental temperature; thus, no interaction was observed between cold and hypoxia (P = 0.1). l-NAME restored vasoconstriction during combined cold-hypoxia (P = 0.01). This investigation suggests that reflex cold-induced cutaneous vasoconstriction acts independently of NO suppression, whereas hypoxia-induced cutaneous vasodilatation is dependent on NOS-derived NO production.NEW & NOTEWORTHY When separated from local cooling, whole body cooling elicited cutaneous reflex vasoconstriction via mechanisms independent of nitric oxide removal. Hypoxia elicited cutaneous vasodilatation via mechanisms mediated primarily by nitric oxide synthase, rather than xanthine oxidase-mediated nitrite reduction. Cold-induced vasoconstriction was blunted by the opposing effect of hypoxic vasodilatation, whereas the underpinning mechanisms did not interrelate in the absence of local cooling. Full vasoconstriction was restored with nitric oxide synthase inhibition.


Sujet(s)
Monoxyde d'azote , Phénomènes physiologiques de la peau , Humains , Hypoxie , Microdialyse , L-NAME/pharmacologie , Nitric oxide synthase , Débit sanguin régional , Peau , Vasodilatation
10.
J Therm Biol ; 92: 102663, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32888566

RÉSUMÉ

We evaluated the paper by Maley et al. (2020) in this journal "Infrared cameras overestimate skin temperature during rewarming from cold Exposure" for the evidence provided in support of its title and conclusions. Several methodological issues were identified as well as issues with the data interpretation: 1: Only one camera was used but a conclusion was made for 'cameras' in general; 2: The camera accuracy (±2 °C) is too low to do a meaningful comparison without using local reference values or an on-site calibrator with higher accuracy; 3: Thermistor measurements are taken as a gold standard while issues such as temperature gradients and taping are known; 4: Both methods are not compared at the same location and a natural, physiological, gradient may be present between their locations; 5. The impact of the sensor and tape on delays in the change of the underlying tissue temperature is not considered; 6: Only a single pixel was used for the analysis, which has been shown to be problematic. We concluded that the paper by Maley et al. does not provide conclusive evidence that infrared cameras overestimate skin temperature during rewarming from cold exposure.


Sujet(s)
Température cutanée , Thermographie/méthodes , Basse température , Humains , Rayons infrarouges , Réchauffement
11.
Eur J Appl Physiol ; 120(3): 591-601, 2020 Mar.
Article de Anglais | MEDLINE | ID: mdl-31955279

RÉSUMÉ

PURPOSE: To compare two analytical methods for the estimation of the shivering onset inflection point, segmental regression and visual inspection of data, and to assess the test-retest reliability and validity of four metrics of shivering measurement; oxygen uptake (V̇O2), electromyography (EMG), mechanomyography (MMG) and bedside shivering assessment scale (BSAS). METHODS: Ten volunteers attended three identical experimental sessions involving passive deep-body cooling via cold water immersion at 10 °C. V̇O2, EMG, and MMG were continuously assessed, while the time elapsed at each BSAS stage was recorded. Metrics were graphed as a function of time and rectal temperature (Tre). Inflection points for intermittent and constant shivering were visually identified for every graph and compared to segmental regression. RESULTS: Excellent agreement was seen between segmental regression and visual inspection (ICC, 0.92). All measurement metrics presented good-to-excellent test-retest reliability (ICC's > 0.75 and 0.90 respectively), with the exception of visual identification of intermittent shivering for V̇O2 measurement (ICC, 0.73) and segmental regression for EMG measurement (ICC, 0.74). In the assessment of signal-to-noise ratio (SNR), EMG showed the largest SNR at the point of shivering onset followed by MMG and finally V̇O2. CONCLUSIONS: Segmental regression provides a successful analytical method for identifying shivering onset. Good-to-excellent reliability can be seen across V̇O2, EMG, MMG, and BSAS, yet given the observed lag times, SNRs, along with known advantages/disadvantaged of each metric, it is recommended that no single metric is used in isolation. An integrative, real-time measure of shivering is proposed.


Sujet(s)
Électromyographie , Consommation d'oxygène , Frissonnement , Adulte , Femelle , Volontaires sains , Humains , Mâle , Reproductibilité des résultats , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...