Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Neurosci Res ; 170: 50-58, 2021 Sep.
Article de Anglais | MEDLINE | ID: mdl-32987088

RÉSUMÉ

Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.


Sujet(s)
Neurones afférents , Acide gamma-amino-butyrique , Axones , Ganglions sensitifs des nerfs spinaux , Névroglie , Récepteurs GABA-A
2.
PLoS One ; 9(9): e108187, 2014.
Article de Anglais | MEDLINE | ID: mdl-25255145

RÉSUMÉ

Voltage-gated Ca2+ (CaV) channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type) a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR). In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.


Sujet(s)
Canaux calciques de type T/génétique , Expression des gènes , Motoneurones/métabolisme , Moelle spinale/cytologie , Moelle spinale/métabolisme , Animaux , Inhibiteurs des canaux calciques/pharmacologie , Canaux calciques de type T/métabolisme , Potentiels de membrane , Motoneurones/effets des médicaments et des substances chimiques , Tortues
3.
Biochem Biophys Res Commun ; 412(1): 26-31, 2011 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-21798246

RÉSUMÉ

GABA(A) receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α(5) has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α(5) subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α(5) subunit-containing GABA(A) receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α(4/6) subunit-containing GABA(A) receptors, but is sensitive to L-655708, an antagonist of the GABA(A) receptors containing α(5) subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α(5) subunit in the turtle spinal cord. Together, these results suggest that GABA(A) receptors containing the α(5) subunit mediate the tonic inhibitory currents observed in VHIs.


Sujet(s)
Cellules de la corne ventrale/physiologie , Interneurones/physiologie , Récepteurs GABA-A/physiologie , Réflexe/physiologie , Animaux , Antagonistes du récepteur GABA-A/pharmacologie , Imidazoles/pharmacologie , Techniques de patch-clamp , Tortues
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE