Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Faraday Discuss ; 242(0): 375-388, 2023 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-36178299

RÉSUMÉ

In a recent work [A. Nassereddine et al., Small 2021, 17, 2104571] we reported the atomic-scale structure and dynamics of sub-4 nm sized Au nanoparticles (NPs) supported on titania in H2 at atmospheric pressure obtained by using aberration-corrected environmental transmission electron microscopy (ETEM), density functional theory (DFT) optimizations and ab initio molecular dynamic (AIMD) simulations. Our results showed unstable Au NPs losing their face-centred cubic (fcc) symmetry (from fcc to non-fcc symmetries) and revealed the drastic effect of hydrogen adsorption. In this work, we use the same approach to study the dynamics of equiatomic Au-Cu NPs in the same range of size and the results show an enhanced structural stability upon alloying by Cu. In spite of the morphology evolution from facetted to rounded shapes, the observed Au-Cu NPs are found to keep their fcc symmetry under atmospheric hydrogen pressure. AIMD simulation evidences a Cu segregation process from the sub-surface toward the upper surface layer, and a reversed segregation of Au atoms from the surface towards the sub-surface sites. The analysis of the chemical ordering in the core shows a tendency to a local chemical ordering where Au-Cu hetero-atomic bindings are favoured. The segregating Cu seems to play a major role in reducing the fluxionality of Au-Cu NPs in H2 and thus, maintaining their fcc symmetry.

2.
Phys Chem Chem Phys ; 13(13): 6000-9, 2011 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-21344078

RÉSUMÉ

The prediction of a reaction mechanism and the identification of the corresponding chemical intermediates is a major challenge in surface science and heterogeneous catalysis, due to a complex network of elementary steps and surface species. Here we demonstrate how to overcome this difficulty by tracking the temperature dependent formation of the initial reaction intermediates and identifying the decomposition pathways in the case of prenal, an α,ß-unsaturated aldehyde, on the Pt(111) model catalyst surface by combining vibrational spectroscopy, thermal reaction/desorption spectroscopy (TPRS) experiments and detailed theoretical analysis. TPRS characterization of this reaction up to 600 K shows a series of desorption states of H(2) (∼280 K, 410 K and 473 K) and CO (∼414 K), giving valuable insights into the sequence of elementary steps suggesting that the loss of hydrogen and the carbonyl functions are among the first elementary steps. HREELS experiments recorded after annealing to specific temperatures result in complex spectra, which can be assigned to several subsequently formed and transformed surface intermediates. Starting from stable prenal adsorption structures, complementary DFT calculations allow the determination of the most likely reaction pathway for the initial decomposition steps and the identification of the corresponding intermediates by comparison with HREELS. The decomposition occurs from the strongly bonded prenal adsorption structures via a dehydro-η(3)-triσ(CCC)-H1 intermediate to the highly stable η(1)-isobutylidyne species at high temperatures.

3.
J Phys Chem B ; 109(19): 9596-603, 2005 May 19.
Article de Anglais | MEDLINE | ID: mdl-16852155

RÉSUMÉ

A CO stretching frequency analysis is presented for the adsorption of CO on various Au(110) surfaces from density functional theory calculations. The structure sensitivity of the adsorption has been studied by considering the unreconstructed (1 x 1) surface, the missing-row reconstructed (1 x 2) surface, the vicinal stepped (20) surface, and the adsorption on adatoms deposited on the (110)-(1 x 2) surface. The calculated CO stretching frequencies are compared with infrared reflection-absorption spectroscopy (IRAS) measurements carried out at room temperature and pressure below 1 atm. The overall stability of the systems is discussed within the calculations of surface free energies at various coverages. At room temperature, the adsorption of CO on the ridge of the missing-row reconstructed surface competes in the high pressure regime with more complex adsorption structures where the molecule coadsorbs on the ridge and on adatoms located along the empty troughs of the reconstruction. This result is supported by the CO stretching frequency analysis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...