Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Sujet principal
Gamme d'année
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38473616

RÉSUMÉ

The microstructure evolution associated with the cold forming sequence of an Fe-14Cr-1W-0.3Ti-0.3Y2O3 grade ferritic stainless steel strengthened by dispersion of nano oxides (ODS) was investigated. The material, initially hot extruded at 1100 °C and then shaped into cladding tube geometry via HPTR cold pilgering, shows a high microstructure stability that affects stress release heat treatment efficiency. Each step of the process was analyzed to better understand the microstructure stability of the material. Despite high levels of stored energy, heat treatments, up to 1350 °C, do not allow for recrystallization of the material. The Vickers hardness shows significant variations along the manufacturing steps. Thanks to a combination of EBSD and X-ray diffraction measurements, this study gives a new insight into the contribution of statistically stored dislocation (SSD) recovery on the hardness evolution during an ODS steel cold forming sequence. SSD density, close to 4.1015 m-2 after cold rolling, drops by only an order of magnitude during heat treatment, while geometrically necessary dislocation (GND) density, close to 1.1015 m-2, remains stable. Hardness decrease during heat treatments appears to be controlled only by the evolution of SSD.

2.
Nat Commun ; 14(1): 8008, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-38052793

RÉSUMÉ

Laser powder bed fusion (LPBF) is a metal additive manufacturing technique involving complex interplays between vapor, liquid, and solid phases. Despite LPBF's advantageous capabilities compared to conventional manufacturing methods, the underlying physical phenomena can result in inter-regime instabilities followed by transitions between conduction and keyhole melting regimes - leading to defects. We investigate these issues through operando synchrotron X-ray imaging synchronized with acoustic emission recording, during the remelting processes of LPBF-produced thin walls, monitoring regime changes occurring under constant laser processing parameters. The collected data show an increment in acoustic signal amplitude when switching from conduction to keyhole regime, which we correlate to changes in laser absorptivity. Moreover, a full correlation between X-ray imaging and the acoustic signals permits the design of a simple filtering algorithm to predict the melting regimes. As a result, conduction, stable keyhole, and unstable keyhole regimes are identified with a time resolution of 100 µs, even under rapid transitions, providing a straightforward method to accurately detect undesired processing regimes without the use of artificial intelligence.

3.
Nat Mater ; 21(7): 738-739, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35768595
4.
Materials (Basel) ; 14(19)2021 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-34640016

RÉSUMÉ

In the past few years, laser powder-bed fusion (LPBF) of bulk metallic glasses (BMGs) has gained significant interest because of the high heating and cooling rates inherent to the process, providing the means to bypass the crystallization threshold. In this study, (for the first time) the tensile and Charpy impact toughness properties of a Zr-based BMG fabricated via LPBF were investigated. The presence of defects and lack of fusion (LoF) in the near-surface region of the samples resulted in low properties. Increasing the laser power at the borders mitigated LoF formation in the near-surface region, leading to an almost 27% increase in tensile yield strength and impact toughness. Comparatively, increasing the core laser power did not have a significant influence. It was therefore confirmed that, for BMGs like for crystalline alloys, near-surface LoFs are more detrimental than core LoFs. Although increasing the border and core laser power resulted in a higher crystallized fraction, detrimental to the mechanical properties, reducing the formation of LoF defects (confirmed using micro-computed tomography, Micro-CT) was comparatively more important.

5.
Sci Rep ; 11(1): 14919, 2021 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-34290334

RÉSUMÉ

Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40[Formula: see text] or 80[Formula: see text] respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54[Formula: see text] and 104[Formula: see text] respectively, compared to the conventional LSP treatment.

6.
NPJ Microgravity ; 5: 4, 2019.
Article de Anglais | MEDLINE | ID: mdl-30820447

RÉSUMÉ

Here we present measurements of surface tension and viscosity of the bulk glass-forming alloy Pd43Cu27Ni10P20 performed during containerless processing under reduced gravity. We applied the oscillating drop method in an electromagnetic levitation facility on board of parabolic flights. The measured viscosity exhibits a pronounced temperature dependence following an Arrhenius law over a temperature range from 1100 K to 1450 K. Together with literature values of viscosity at lower temperatures, the viscosity of Pd43Cu27Ni10P20 can be well described by a free volume model. X-ray diffraction analysis on the material retrieved after the parabolic flights confirm the glassy nature after vitrification of the bulk samples and thus the absence of crystallization during processing over a wide temperature range.

7.
J Appl Crystallogr ; 50(Pt 6): 1646-1652, 2017 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-29217991

RÉSUMÉ

A significant variant selection is reported in isothermal martensite formed on the surface of an Fe-30% Ni sample. The selection phenomenon is modelled using different descriptions of the martensitic phase transformation. In particular, matrices based on the phenomenological theory of martensite crystallography, the Jaswon and Wheeler distortion, and the continuous face centred cubic-body centred cubic distortion are compared. All descriptions allow good predictions of the variant selection. However, the Jaswon and Wheeler distortion and the continuous distortion better account for other features of the surface martensite, such as the {225}γ habit plane and the accommodation mechanism by twin-related variant pairing.

8.
Sci Rep ; 7: 40938, 2017 01 20.
Article de Anglais | MEDLINE | ID: mdl-28106127

RÉSUMÉ

Fine twinned microstructures with {225}γ habit planes are commonly observed in martensitic steels. The present study shows that an equibalanced combination of twin-related variants associated to the Kurdjumov-Sachs orientation relationship is equivalent to the Bowles and Mackenzie's version of the PTMC for this specific {225}γ case. The distortion associated to the Kurdjumov-Sachs orientation relationship results from a continuous modeling of the FCC-BCC transformation. Thus, for the first time, an atomic path can be associated to the PTMC.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE