Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 27
Filtrer
Plus de filtres










Gamme d'année
1.
Odontology ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977542

RÉSUMÉ

To evaluate the effect of adhesive coats application on the enamel microtensile bond strength (µTBS) of universal adhesives, morphological etching pattern and their chemical interaction with hydroxyapatite (HA). Two universal adhesives were investigated: Scotchbond Universal (SBU, 3 M) and Prime&Bond Universal (PBU, Dentsply). The adhesives were applied in self-etching mode on bovine enamel (n = 8) in one (1L), two (2L) or three coats (3L) and light-cured as per manufacturers' instructions. As controls adhesives were applied to etched enamel (H3PO4-37% phosphoric acid). Bonded specimens were cut into sticks that were stored in deionized water for 24 h or 6 months prior to µTBS testing. Two-way ANOVA and Tukey's test were used for statistical analysis of bond strength with α = 5%. For morphological SEM analysis, enamel surfaces were treated as aforementioned and immediately rinsed with acetone. The intensity of monomer-calcium salt formation from each treatment was measured via infrared spectroscopy (ATR-FTIR). All treatments presented no significant reduction on µTBS after aging (p > 0.05). However, SBU attained highest µTBS when applied in 3L. PBU showed higher µTBS when applied to H3PO4 etched enamel than 1L or 2L. Etching pattern was enhanced by 3L application, particularly with PBU. Chemical interaction was notably higher for SBU than PBU, with no relevant differences with more layers or prior H3PO4-etching. The application of three adhesive coats of universal adhesives in self-etch mode using may enhance the bonding performance and etching pattern to enamel, surpassing the H3PO4-etched enamel bond for SBU. The chemical interaction with calcium from enamel is not affected by number of coats or prior phosphoric acid etching.

2.
Dent Mater ; 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39068089

RÉSUMÉ

OBJECTIVES: To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL). METHODS: CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05). RESULTS: CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs. SIGNIFICANCE: Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL's mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.

3.
Int J Biol Macromol ; 274(Pt 2): 133349, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38925179

RÉSUMÉ

New routes for biomass valorization have been developing by the scientific community. The aim of this work was developing a novel OrganoCat-based protocol and deeply understand the structure of the obtained lignins. Microwave-assisted OrganoCat-based process was performed using a biphasic system (ethyl acetate and oxalic acid or HCl) at mild conditions. OrganoCat-based lignins (OCLs) were characterized by compositional analysis, FTIR, 1H, 13C, 1H13C HSQC, 31P NMR, TGA and GPC. The solubility of OCLs in different organic solvents and their antioxidant capacity against DPPH were investigated. The spectroscopic analyses showed that OCLs have high residual extractives and the lignin motifs were preserved. OCLs have presented lower thermal stability than MWL, but showed great antioxidant activities and high solubility in a wide range of organic solvents. A novel biorefinery protocol yielded coconut shell lignins with peculiar structural and compositional features and several technological applications through an eco-friendly, sustainable and relatively low-cost biphasic pulping process.


Sujet(s)
Antioxydants , Cocos , Lignine , Micro-ondes , Solubilité , Lignine/composition chimique , Antioxydants/composition chimique , Antioxydants/pharmacologie , Cocos/composition chimique , Solvants/composition chimique , Technologie de la chimie verte
4.
Biomed Res Int ; 2024: 7457900, 2024.
Article de Anglais | MEDLINE | ID: mdl-38884017

RÉSUMÉ

Objective: To evaluate the enamel bonding ability and orthodontic adhesive resin degree of conversion using the experimental bracket design. Material and Methods. Thirteen bovine teeth were used in the study. The experimental bracket was modified with a translucent region in the center of its body. After enamel etching, Orthocem orthodontic adhesive (FGM, Joinville, Brazil) was applied on the bracket base for bonding. The groups were divided as follows (n = 10 per group): (1) control (CB) with standard brackets and (2) spot bracket (SB) with experimental brackets featuring a 0.8 mm translucent region at the center using carbide bur. Shear bond strength (SBS) was evaluated after 24 hours in a universal testing machine and adhesive remnant index (ARI). The degree of conversion (DC) was analyzed using Raman spectroscopy (n = 3 per group). Data were then analyzed using Student's t-test and Mann-Whitney statistical methods. Results: The SB group exhibited a higher mean SBS (10.33 MPa) compared to the CB Group (8.77 MPa). However, there was no statistical difference between the groups (p = 0.376). Both SB and CB groups had a mean ARI score of 1. Raman analysis revealed a higher degree of conversion in the SB group (49.3%) compared to the CB group (25.9%). Conclusions: The experimental support showed a higher degree of adhesive conversion, although there was no significant increase in bond strength.


Sujet(s)
Résines composites , Collage dentaire , Émail dentaire , Brackets orthodontiques , Polymérisation , Résistance au cisaillement , Animaux , Bovins , Collage dentaire/méthodes , Émail dentaire/composition chimique , Résines composites/composition chimique , Test de matériaux , Ciments dentaires/composition chimique , Céments résine/composition chimique
5.
Fitoterapia ; 174: 105857, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38354821

RÉSUMÉ

Mauritia flexuosa, known as buriti in Brazil, is a widespread palm tree in Amazonia. It has many ethnobotanical uses, including food, oil, and medicine. The oil obtained from buriti's fruit pulp has high levels of monounsaturated fatty acids, carotenoids, and tocopherols, and is used in the food, cosmetic, and pharmaceutical industries for its antioxidant properties. Many biological activities have been reported for buriti oil, such as antioxidant, antimicrobial, chemopreventive, and immunomodulatory. Due to its high content of bioactive compounds, buriti oil is considered a functional ingredient with possible benefits in preventing oxidative stress and chronic diseases, particularly in the gastrointestinal tract. Peptic ulcer disease is a multifactorial disorder, involving lesions in the stomach and duodenum mucosa, which has a complex healing process. In this context, some nutrients and bioactive compounds help the maintenance of gastrointestinal mucosal integrity and function, such as carotenoids, tocopherols, and unsaturated fatty acids, which makes buriti oil an interesting candidate to be used in the prevention and management of gastrointestinal diseases. This study aimed to evaluate the gastroprotective and antiulcer effects of buriti oil and its possible mechanisms of action. Buriti oil reduced the ulcerative area and lipid peroxidation induced by ethanol. The gastroprotective activity of buriti oil partially depends on nitric oxide and sulfhydryl compounds. In acetic acid-induced gastric ulcers, buriti oil accelerated healing and stimulated the formation of new gastric glands. These results demonstrated the potential of buriti oil as a functional ingredient to promote health benefits in the gastrointestinal tract.


Sujet(s)
Antioxydants , Arecaceae , Huiles végétales , Antioxydants/pharmacologie , Promotion de la santé , Structure moléculaire , Caroténoïdes/pharmacologie , Tocophérols/pharmacologie
6.
Int J Biol Macromol ; 242(Pt 2): 124863, 2023 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-37201891

RÉSUMÉ

The lignin valorization constitutes a chemical platform for several segments of chemical industry. The aim of this work was to evaluate the potential of acetosolv coconut fiber lignin (ACFL) as an additive to DGEBA, curing it using an aprotic IL ([BMIM][PF6]) and analyze the properties of the obtained thermosetting materials. ACFL was obtained by mixing coconut fiber with 90 % acetic acid and 2 % HCl at 110 °C during 1 h. ACFL was characterized by FTIR, TGA and 1H NMR. The formulations were fabricated by mixing DGEBA and ACFL at different concentrations (0-50 % wt.). The curing parameters and [BMIM][PF6] concentrations were optimized by DSC analyses. The cured ACFL-incorporated epoxy resins were characterized by gel content (GC), TGA, MCC and chemical resistance in different media. ACFL undergone a selective partial acetylation that favored its miscibility with DGEBA. High GC values were obtained at high curing temperatures and ACFL concentration. The crescent ACFL concentration did not affect the Tonset of the thermosetting materials significantly. ACFL has increased the resistance of DGEBA to combustion and different chemical media. ACFL has shown a great potential to be used as a bio-additive for enhancing the chemical, thermal and combustion properties of high-performance materials.


Sujet(s)
Liquides ioniques , Lignine , Lignine/composition chimique , Polymérisation , Phénomènes chimiques , Allergènes
7.
Int J Biol Macromol ; 220: 1267-1276, 2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36063889

RÉSUMÉ

Lignin has been used on its crude or modified forms for adsorption purposes. This work evaluated the influence of selective pH precipitation of Kraft lignins (KLs) on their adsorptive performance for removing methylene blue (MB). The alkaline and acid KLs (KL A and KLB, respectively) were characterized by FTIR, 31P NMR, GPC and pHPZC analyses. The effects of biosorbent and adsorbate concentrations, pH, ionic strength, contact time and temperature on the MB adsorption were evaluated. The equilibrium, kinetic and thermodynamic parameters were calculated by Langmuir and Freundlich isotherms, pseudo-first and second order and Van't Hoff and Gibbs models, respectively. KL A and KL B presented peculiar structural features, mainly hydroxyls concentration and Mw values, which have influenced on the removal efficiency of MB and the adsorptive capacities of KL A (>80 %; ≥80 mg g-1) and KL B (>90 %; ≥20 mg g-1), respectively. The equilibrium, kinetic and thermodynamic parameters have shown that MB adsorption presented different mechanisms for each KL, but it only has driven by chemisorption for KL B. Therefore, KL A and KL B can be considered as potential novel biosorbents obtained through a clean, fast and simple route for textile wastewater treatment.


Sujet(s)
Bleu de méthylène , Polluants chimiques de l'eau , Adsorption , Concentration en ions d'hydrogène , Cinétique , Lignine , Bleu de méthylène/composition chimique , Thermodynamique , Polluants chimiques de l'eau/composition chimique
8.
Dent Mater ; 38(10): 1610-1622, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-36050192

RÉSUMÉ

OBJECTIVES: The aim of this study was to evaluate the influence on MMP inhibition, dentin adhesion and physicochemical properties of an adhesive system incorporated with polymerizable collagen crosslinker monomer derived from cardanol. METHODS: The intermediary cardanol epoxy (CNE) was synthesized through cardanol epoxidation, followed by synthesis of cardanol methacrylate through methacrylic acid solvent-free esterification. Zymographic analysis was performed to evaluate the substances' ability to inhibit gelatinolytic enzymes. Collagen crosslinkers were added into adhesives systems according to the following groups: Ybond Universal® (Control), Ybond® + 2 % proanthocyanidin (PAC), Ybond® + 2 % unsaturated cardanol (Cardanol) and Ybond® + 2 % cardanol methacrylate (CNMA). Degree of conversion (DC) of the adhesives was assessed by FT-IR. Disk-shaped specimens were prepared for water sorption (WS) and solubility (SL) tests. Human third molars were sectioned to expose medium dentin and restored according to the different adhesives used (n = 5). Then, the specimens were cut into 1 mm2 sticks to evaluate, after 24 h and 6-month aging, microtensile bond strength (µTBS) and nanoleakage by scanning electron microscopy. Data were analysed with ANOVA and Tukey's post-test (α = 0.05). RESULTS: CNMA and PAC completely inhibited all forms of gelatinolytic enzymes. Cardanol achieved a significantly lowest DC, while the other groups did not differ from each other (p > 0.05). PAC achieved significantly higher water sorption, while CNMA solubility was significantly lower when compared to the other adhesives (p < 0.05). PAC provided a statistically higher 24 h and 6-month aging bond strength. Intermediary similar µTBS were presented by control and CNMA (p = 0.108). All adhesives applied attained significantly reduced bond strength after aging (p < 0.05). Interfaces created using CNMA were almost devoid of silver deposits initially, however all groups showed large amounts of silver deposits on resin-dentin interface subjected to water aging. SIGNIFICANCE: Although CNMA was effective in inhibiting gelatinolytic enzymes, when incorporated into a universal adhesive it could not promote less degradation of the adhesive interface after water aging. Since it is a hydrophobic monomer, CNMA did not interact well with dentin collagen, however it reduced the solubility of the adhesive system besides not interfering in its polymerization.


Sujet(s)
Collage dentaire , Proanthocyanidines , Collagène , Dentine , Agents de collage dentinaire/composition chimique , Humains , Test de matériaux , Méthacrylates/composition chimique , Phénols , Céments résine/composition chimique , Argent , Spectroscopie infrarouge à transformée de Fourier , Résistance à la traction , Eau
9.
Braz Oral Res ; 36: e093, 2022.
Article de Anglais | MEDLINE | ID: mdl-35830119

RÉSUMÉ

The aim of the study was to evaluate how the association of solvents (tetrahydrofuran [THF], dimethyl sulfoxide [DMSO], ethanol [ET] or acetone [ACT]) with experimental dental adhesives affects selected properties of experimental dental adhesives and dentin bond durability. Six adhesive combinations were prepared containing: 30 % ET, 30 % ACT, 30 % THF, 28 % ET + 2 % DMSO (ET+DMSO), 15 % ethanol + 15 % THF (ET+THF), or 28 % THF + 2 % DMSO (THF+DMSO). Thirty-six molars (n = 6) were cut to expose the coronary dentin, and were randomly divided according to the adhesives. They were restored, and then cut into resindentin sticks (1 mm²), and stored in distilled water for 24 h or 6 months, until conducting the microtensile bond strength and nanoleakage tests. Other experiments performed with adhesives included viscosity assessment using a rheometer, and degree of conversion using Fourier-transform infrared spectroscopy (FTIR). The data were analyzed statistically using two-way ANOVA and Tukey's test (p < 0.05). The adhesive formulated exclusively with THF showed the highest viscosity, followed by ET+THF, which obtained the highest degree of conversion compared to ET, and THF alone. ET+DMSO obtained the highest 24-h and aged bond strengths (p < 0.05). ET+THF increased the nanoleakage slightly after 6 months, but attained the only gap-free adhesive interface among all the groups. The combination of alternative solvents, particularly THF, with conventional ones (ET) has improved chemical properties, and the dentin bonding of experimental simplified adhesives.


Sujet(s)
Collage dentaire , Agents de collage dentinaire , Collage dentaire/méthodes , Dentine , Agents de collage dentinaire/composition chimique , Diméthylsulfoxyde , Éthanol , Test de matériaux , Céments résine/composition chimique , Solvants/composition chimique , Résistance à la traction
10.
Materials (Basel) ; 15(9)2022 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-35591547

RÉSUMÉ

To evaluate the biomodification ability of lignin used as pre-treatment in human dentin before the application of an etch-and-rinse adhesive. Experimental hydroethanolic solutions with different cross-linking agents were used: 6.5% proanthocyanidins (PAC, from grape-seed extract); 2% cardanol (CARD, from cashew-nut shell liquid); lignin (LIG, from eucalyptus) at 1, 2 or 4% concentrations. The negative control (NC) was ethanol 50 v%. Extracted molars were prepared, and dentin microtensile bond strength (µTBS) was evaluated after 24 h water storage or 10,000 thermocycling aging. Further specimens were processed for SEM nanoleakage, micropermeability confocal microscopy evaluation and in situ degree of conversion (DC) through micro-Raman spectroscopy. Demineralized dentin sticks were submitted to a three-point bending test to evaluate the elastic modulus (E) before and after 1 min biomodification using the tested solutions. Moreover, it was also evaluated the mass changes and hydroxyproline (HYP) release after 4-weeks of water storage. Vibrational collagen crosslinking identification was evaluated through micro-Raman spectroscopy. The results were analyzed by analysis of variance (ANOVA) and Tukey's test (α = 0.05). A significant reduction in µTBS was observed in groups NC (p < 0.001) and CARD (p = 0.026). LIG-4% showed no significant reduction in µTBS after aging (p = 0.022). Nanoleakage micrographs showed hybrid layer protection with all agents, but reduced micropermeability was attained only with lignin. Polymerization was negatively affected in the presence of all tested cross-linking agents, except LIG-1%. Lignin and cardanol increased the dentin E values, but only lignin reduced the mass loss in dentin specimens. Effective collagen crosslinking (1117 cm−1 and 1235 cm−1) was detected for all agents. HYP release was significantly lower with LIG-1% than NC (p < 0.001). Lignin was able to perform collagen cross-linking and prevent the degradation of unprotected dentin collagen, thereby improving the bonding performance of the composite restorations performed in this study.

11.
Int J Biol Macromol ; 211: 271-280, 2022 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-35577184

RÉSUMÉ

The optimization of the parameters involved in lignin extraction is crucial for obtaining a lignin with specific structural features for its further valorization. The aim of this work was to develop an eco-friendly organosolv protocol for tuning the acetylation degree of coconut shell lignins (CSLs) by using MgCl2 and HCl as catalyst and co-catalyst, respectively. CSLs were obtained by mixing coconut shell powder with 90% v/v acetic acid combined to no catalyst, 2% v/v HCl and 2% w/v MgCl2 (1, 2 and 3 h) and 2% w/v MgCl2 combined to 0.1, 0.25 and 0.5% v/v HCl (2 h) at 110 °C. CSLs were characterized by FTIR, 1H NMR, GPC and TGA. The effects of the acetylation degree were evaluated on their antioxidant activity (DPPH assay) and UV-blocking capacity in sunscreen formulations. The results have shown that the use of HCl as co-catalyst increased the lignin yield (from 21.4 to 48.8%) and the acetylation degree (from 0.81 to 1.58 mmol g-1), which positively affected thermal (200 < Tonset < 226 °C), antioxidant (46.6 < IC50 < 67.5 µg mL-1) and UV-blocking capacities of CSLs. It can be concluded that the design of the organosolv process was capable of generating lignins with peculiar functionalities and properties through an eco-friendly protocol.


Sujet(s)
Cocos , Lignine , Acétylation , Antioxydants/composition chimique , Antioxydants/pharmacologie , Lignine/composition chimique , Solubilité
12.
Int J Pharm ; 619: 121698, 2022 May 10.
Article de Anglais | MEDLINE | ID: mdl-35337904

RÉSUMÉ

The search for effective and less toxic drugs for the treatment of Cutaneous Leishmaniasis (CL) is desirable due to the emergence of resistant parasites. The present study shows the preparation, characterization and in vitro antileishmanial activity of green-based silver nanoparticles (AgNPs) with Cashew Nutshell Liquid (CNSL, main constituents: anacardic acid (AA) and cardol (CD). The synthesis of silver nanoparticles was achieved by reduction with sodium borohydride in the presence of anacardic acid or cardol under microwave irradiation (400 W, 60 °C, 5 min) resulting in AgAA and AgCD. In vitro assay showed opposite effects for AgAA and AgCD. While AgAA is highly toxic to macrophages (CC50 = 6.910 µg mL-1) and almost non-toxic for L.braziliensis (IC50 = 86.61 µg mL-1), AgCD results very selective toward killing the parasite (CC50 = 195.0 µg mL-1, IC50 = 11.54 µg mL-1). AA's higher polarity and conical shape easily promote cell lysis by increasing cell permeability, while CD has a protective effect: for that reason, AA and AgAA were not further used for tests. CD (EC50 = 2.906 µg mL-1) had higher ability to kill intracellular amastigotes than AgCD (EC50 = 16.00 µg mL-1), however, less intact cells were seen on isolated CD tests. In addition, considering that NO is one of the critical molecular species for the intracellular control of Leishmania, we used Griess colorimetric test to analyze the effect of treatment with AgCD and CD. Overall, the in vitro antileishmanial tests indicate that AgCD should be further explored as a promising non-toxic treatment for CL.


Sujet(s)
Antiprotozoaires , Leishmaniose cutanée , Nanoparticules métalliques , Acides anacardiques , Antiprotozoaires/pharmacologie , Antiprotozoaires/usage thérapeutique , Humains , Leishmaniose cutanée/traitement médicamenteux , Résorcinol , Argent/pharmacologie
13.
Environ Sci Pollut Res Int ; 29(53): 79920-79934, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-35075560

RÉSUMÉ

The search for renewable adsorbent materials has increased continuously, being the agro-wastes an interesting alternative. This work aimed to elucidate the mechanism of adsorption of Rhodamine B on crude and modified coconut fibers from aqueous systems and the feasibility of reusing the biosorbents. The chemical modification of crude coconut fiber was carried out by the organosolv process. The biosorbents were characterized by lignocellulosic composition, FTIR, TGA, WCA, SEM, nitrogen adsorption/desorption (BET-BJH), and pH of zero point of charge (pHPZC) analyses. The batch adsorption tests evaluated the effects of the adsorbent and adsorbate dosages, contact time, and temperature on Rhodamine B adsorption. For elucidating the adsorption mechanisms involved in the process, the non-linear forms of kinetic and isotherm models were used. The regeneration of the biosorbents was evaluated by carrying out the desorption experiments. Modified coconut fiber had an increase in the amount of α-cellulose, which influenced its structural, morphological, surface, and porous properties. The removal efficiency of Rhodamine B was about 90% for modified coconut fiber and 36% for crude coconut fiber. The dye adsorption was spontaneous and endothermic for both biosorbents, showing higher spontaneity and affinity with the adsorbate for biosorbent modified. Therefore, the coconut fiber can be considered an alternative to the traditional adsorbent materials that allows the reuse by four times without performance loss, in which its adsorptive capacity has increased through its chemical modification by a biorefinery process.


Sujet(s)
Cocos , Polluants chimiques de l'eau , Adsorption , Cocos/composition chimique , Polluants chimiques de l'eau/analyse , Cinétique , Cellulose/composition chimique , Azote , Concentration en ions d'hydrogène
14.
Odontology ; 110(3): 434-443, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-34800212

RÉSUMÉ

To evaluate i) the inhibitory and bactericidal activity of cashew nut shell liquid (CNSL) and its isolated compounds (anacardic acid and cardol) against oral bacteria; ii) the biofilm formation inhibition, resin-dentin bond strength and physicochemical properties of a dental adhesive incorporated with these substances. The antibacterial effect of CNSL, anacardic acid, and cardol were assessed by determining the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations. Effect in inhibiting biofilm formation of the adhesive incorporated with the substances (15 µg/ml) against a mixed-species biofilm of Streptococcus mutans and Candida Albicans and was determined by direct contact test. Additional Analysis included microtensile bond strength (µTBS) test, elastic modulus (EM), flexural strength (FS), degree of conversion (DC), water sorption (WS) and solubility (SL). The data were submitted to statistical analysis by one-way ANOVA and Tukey's test (p < 0.05). CNSL, anacardic acid and cardol showed antibacterial activity for all strains tested, with MIC and MBC values ranging from 3.12 to 25 µg/ml. There was no growth of colonies forming units in the adhesives incorporated with the substances. EM increased in the adhesive incorporated with anacardic acid, decreased after incorporation of cardol and it was not affected by incorporation of CNSL. The substances tested showed no effect in FS, DC, WS, SL and µTBS. In conclusion, the CNSL, anacardic acid and cardol showed antibacterial effects against oral bacteria and, the incorporation of substances did not reduce the performance of the adhesive.


Sujet(s)
Anacardium , Collage dentaire , Anacardium/composition chimique , Antibactériens/pharmacologie , Ciments dentaires/composition chimique , Dentine/composition chimique , Agents de collage dentinaire/composition chimique , Test de matériaux , Noix/composition chimique , Céments résine/composition chimique , Céments résine/pharmacologie , Streptococcus mutans , Résistance à la traction
15.
Arch Oral Biol ; 133: 105299, 2022 Jan.
Article de Anglais | MEDLINE | ID: mdl-34735926

RÉSUMÉ

OBJECTIVE: The aim was to evaluate the antibacterial and antibiofilm activity of natural (n-CNSL) and technical (t-CNSL) cashew nut shell liquid against streptococci and enterococci related to dental caries and chronic apical periodontitis, respectively. MATERIAL AND METHODS: Minimum inhibitory concentrations (MIC) and minimal bactericidal concentration (MBC) were determined to assess the antimicrobial effect of both CNSLs (n-CSNL and t-CNSL) against S. oralis ATCC 10557, S. sobrinus ATCC 6715, S. parasanguinis ATCC 903, S. mutans UA 159 and E. faecalis ATCC 19433. The antibiofilm activity was evaluated by total biomass quantification, colony forming unit (CFU) counting and scanning electron microscopy (SEM). Furthermore, cytotoxic effect of the substances was evaluated on L929 and HaCat cell lines by MTS assay. RESULTS: The n-CNSL and t-CNSL showed inhibitory and bactericidal effect against all strains tested in this study, with MIC and MBC values ranging from 1.5 to 25 µg/mL. Overall, both CNSLs showed significant reduction in biomass quantification and enumeration of biofilm-entrapped cells for the strains analyzed, in biofilm formation and preformed biofilms (p < 0.05). In biofilm inhibition assay, the t-CNSL and n-CNSL showed reduction in biomass and CFU number for all bacteria, except in cell viability of S. parasanguinis treated with t-CNSL (p > 0.05). Indeed, SEM images showed a reduction in the amount of biomass, bacterial cells and changes in cellular morphology of S. mutans. CONCLUSION: In conclusion, both substances showed effective antibacterial and antibiofilm activity against the strains used in the study, except in viability of S. parasanguinis cells treated with t-CNSL.


Sujet(s)
Anacardium , Anti-infectieux , Caries dentaires , Antibactériens/pharmacologie , Biofilms , Tests de sensibilité microbienne , Noix , Streptococcus mutans
16.
Braz. oral res. (Online) ; 36: e093, 2022. tab, graf
Article de Anglais | LILACS-Express | LILACS, BBO - Ondontologie | ID: biblio-1384196

RÉSUMÉ

Abstract: The aim of the study was to evaluate how the association of solvents (tetrahydrofuran [THF], dimethyl sulfoxide [DMSO], ethanol [ET] or acetone [ACT]) with experimental dental adhesives affects selected properties of experimental dental adhesives and dentin bond durability. Six adhesive combinations were prepared containing: 30 % ET, 30 % ACT, 30 % THF, 28 % ET + 2 % DMSO (ET+DMSO), 15 % ethanol + 15 % THF (ET+THF), or 28 % THF + 2 % DMSO (THF+DMSO). Thirty-six molars (n = 6) were cut to expose the coronary dentin, and were randomly divided according to the adhesives. They were restored, and then cut into resindentin sticks (1 mm²), and stored in distilled water for 24 h or 6 months, until conducting the microtensile bond strength and nanoleakage tests. Other experiments performed with adhesives included viscosity assessment using a rheometer, and degree of conversion using Fourier-transform infrared spectroscopy (FTIR). The data were analyzed statistically using two-way ANOVA and Tukey's test (p < 0.05). The adhesive formulated exclusively with THF showed the highest viscosity, followed by ET+THF, which obtained the highest degree of conversion compared to ET, and THF alone. ET+DMSO obtained the highest 24-h and aged bond strengths (p < 0.05). ET+THF increased the nanoleakage slightly after 6 months, but attained the only gap-free adhesive interface among all the groups. The combination of alternative solvents, particularly THF, with conventional ones (ET) has improved chemical properties, and the dentin bonding of experimental simplified adhesives.

17.
J Adhes Dent ; 23(3): 223-230, 2021 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-34060302

RÉSUMÉ

PURPOSE: To evaluate the effects of pretreatment with different crosslinking agents on glass-fiber-post adhesive luting. MATERIALS AND METHODS: Single-rooted human teeth (n = 20) were randomly assigned to four groups: proanthocyanidins (PA) from grape-seed extract, cardol and cardanol (separated from cashew nut-shell liquid) and negative control (hydroethanolic solution). The solutions were applied on 37% phosphoric acid-etched dentin for 60 s. Glass-fiber posts were cemented using a three-step etch-and-rinse adhesive (Scotchbond Multi-Purpose, 3M Oral Care) and composite cement (RelyX ARC, 3M Oral Care). Slices for the push-out bond strength test were cut and tested after 24-h or 6-month storage in distilled water. The dentin underlying the adhesive layer was analyzed by micro-Raman spectroscopy to evaluate vibrational formation of collagen crosslinks. Three additional slices per group were also made and the adhesive in-situ degree of conversion (DC) was analyzed by micro-Raman spectroscopy. The results were analyzed using two-way ANOVA and Tukey's test (p < 0.05). RESULTS: No statistically significant changes in bond strength were found over time for any of the groups, except with cardol, which increased bond strength (8.4 ± 3.9 MPa at 24 h to 15.0 ± 2.9 MPa after 6 months, p < 0.001) after aging. The formation of peaks at 1117 cm-1 and 1235 cm-1 showed the presence of collagen crosslinks for all three biomodification agents. The DC outcomes showed no statistically significant differences between groups (p = 0.514). CONCLUSION: Biomodification agents did not impair adhesive polymerization. Cardol demonstrated a positive influence on intraradicular dentin bonding for glass-fiber post luting.


Sujet(s)
Restauration coronoradiculaire , Ciments dentaires , Matériaux dentaires , Dentine , Humains , Racine dentaire
18.
Int J Biol Macromol ; 182: 977-986, 2021 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-33887289

RÉSUMÉ

Lignin is a complex phenolic biopolymer present in plant cell walls and a by-product of the cellulose pulping industry. Lignin has functional properties, such as antioxidant activity, that make it a potential natural active ingredient for health-care products. However, not all safety aspects of lignin fractions have been adequately investigated. Herein, we evaluated the antioxidant and genotoxic potential of two hardwood kraft lignins (F3 and F5). The chemical characterization of F3 and F5 demonstrated their thermal stability and the presence of different phenolic units, while the DPPH assay confirmed the antioxidant activity of these lignin fractions. Despite being antioxidants in the DPPH assay, F3 and F5 were capable of generating intracellular reactive oxygen species (ROS) and subsequently causing oxidative DNA damage (Comet assay) in HepG2 cells. The biological relevance of the DPPH assay might be uncertain in some cases; therefore, we suggest combining in chemico tests with biological system-based tests to determine efficacy and safety levels of lignins and define appropriate applications of lignins for consumer products. Moreover, kraft lignins obtained by acid precipitation may pose risks to human health; however, as genotoxicity is not the sole endpoint of toxicity required in hazard assessments, additional toxicological evaluations are needed.


Sujet(s)
Antioxydants/composition chimique , Lignine/composition chimique , Mutagènes/composition chimique , Antioxydants/toxicité , Altération de l'ADN , Cellules HepG2 , Humains , Lignine/toxicité , Mutagènes/toxicité , Stress oxydatif
19.
Int J Biol Macromol ; 181: 241-252, 2021 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-33781810

RÉSUMÉ

There is a growing environmental concern in the world for replacing the traditional petroleum-based products. The aim of this work was to evaluate the structure - property relationship of banana peel lignins (BPLs) as antioxidant and antimicrobial agents by controlling the parameters of organosolv process. The milled banana peel was hydrolyzed using an aqueous acetic acid solution (70, 80 and 90% v/v) and 2.0% v/v HCl at 110 °C for 1, 2 and 3 h. BPLs were characterized by FTIR, 1H NMR, 1H13C HSQC, 31P NMR, GPC and TGA. The antioxidant capacity of BPLs was evaluated by DPPH, ABTS and H2O2 assays, comparing their performance with that of ascorbic and gallic acid. The antimicrobial activity of BPLs was evaluated against E. coli. The reaction time and acetic acid/water ratio had significant effects on the yield and purity of BPLs. The composition of organosolv solution also affected their total amount of hydroxyls (0.71-0.82 mmol g-1), Mw (2759-3954 g mol-1), Tonset (232-254 °C), antioxidant and antimicrobial activities. It can be concluded that the control of organosolv parameters can be a useful tool for tuning the structural features of lignins and to maximize their performance.


Sujet(s)
Anti-infectieux/pharmacologie , Antioxydants/pharmacologie , Lignine/pharmacologie , Musa/composition chimique , Solvants/composition chimique , Température , Bactéries/effets des médicaments et des substances chimiques , Benzothiazoles/composition chimique , Dérivés du biphényle/composition chimique , Champignons/effets des médicaments et des substances chimiques , Peroxyde d'hydrogène/composition chimique , Concentration inhibitrice 50 , Lignine/composition chimique , Spectroscopie par résonance magnétique , Tests de sensibilité microbienne , Masse moléculaire , Picrates/composition chimique , Solutions , Spectroscopie infrarouge à transformée de Fourier , Acides sulfoniques/composition chimique , Thermogravimétrie
20.
Int J Biol Macromol ; 175: 304-312, 2021 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-33516854

RÉSUMÉ

Steam explosion can be used to pretreat lignocellulosic materials to decrease energy and chemical consumption during pulping to obtain environmentally friendly lignin and to improve lignin yield without changing its structure. The objective of this study was to evaluate the extraction of lignin from oil palm mesocarp fibers and sugarcane bagasse using steam explosion pretreatment followed by acetosolv. The biomasses were pretreated at 168 °C for a reaction time of 10 min. Steam explosion combined with acetosolv at lower severities was also carried out. Steam explosion followed by acetosolv increased the lignin yield by approximately 15% and 17% in oil palm mesocarp fibers and sugarcane bagasse, respectively. In addition, steam explosion decreased the reaction time of acetosolv four-fold while maintaining the lignin yield from sugarcane bagasse. Similar results were not obtained for oil palm mesocarp. High-purity and high-quality lignins were obtained using steam explosion pretreatment with structural characteristics similar to raw ones. Sugarcane bagasse lignin seems to be a better option for application in material science due its higher lignin yield and higher thermal stability. Our findings demonstrate that steam explosion is efficient for improving lignin yield and/or decreasing pulping severity.


Sujet(s)
Cellulose/isolement et purification , Lignine/isolement et purification , Huile de palme/isolement et purification , Acide acétique/composition chimique , Biomasse , Biotechnologie/méthodes , Cellulose/composition chimique , Éthanol , Hydrolyse , Lignine/composition chimique , Extraits de plantes/isolement et purification , Saccharum/composition chimique , Vapeur
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE