Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 62
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Small ; : e2405925, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39225373

RÉSUMÉ

Dimeric acceptors are expected to satisfy both excellent power conversion efficiency (PCE) and operational stability of organic solar cells (OSCs). However, comparing to highly planar and symmetrical monomer-like acceptors, the quite different steric/spatial configurations of dimeric acceptors affect device outcomes greatly. Herein, on basis of the same dimeric molecular platform that constructed by bridging central units of two monomer-like acceptor, diverse substituents (─OCH3 for D1, ─CH3 for D2, and ─CF3 for D3) are grafted on central units to regulate the three dimensions (3D) geometries of dimeric acceptors delicately. A systematic investigation reveals the substituent-dependent variation of energy level, absorption, and molecular packing behavior. Consequently, D2 acceptor, characteristic of more favorable configuration, affords a superior film morphology and charge transfer/transport dynamics in resulting OSCs, thus yielding an excellent PCE of 17.50% along with a good long-term stability. This work manifests the crucially important role of central substituents in constructing high-performance dimeric acceptors.

2.
Angew Chem Int Ed Engl ; : e202412983, 2024 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-39180516

RÉSUMÉ

Disordered polymer chain entanglements within all-polymer blends limit the formation of optimal donor-acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all-polymer organic solar cells (APSCs). In this study, two isomers, 4,5-difluorobenzo-c-1,2,5-thiadiazole (SF-1) and 5,6-difluorobenzo-c-1,2,5-thiadiazole (SF-2), were designed as solid additives based on the widely-used electron-deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF-1 or SF-2 into PM6:PY-DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase-separation and vertical distribution. Furthermore, after treatment with SF-1 and SF-2, the exciton diffusion lengths for PY-DT films are extended to over 40 nm, favoring exciton diffusion and charge transport. The asymmetrical SF-2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6:PY-DT-based device to 18.83% due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF-2-treated APSC to over 19%. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all-polymer blends using rational-designed solid additives.

3.
Chem Sci ; 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39144464

RÉSUMÉ

Organic photothermal materials based on conjugated structures have significant potential applications in areas such as biomedical diagnosis, therapy, and energy conversion. Improving their photothermal conversion efficiency through molecular design is critical to promote their practical applications. Especially in similar structures, understanding how the position of heteroatoms affects the conversion efficiency is highly desirable. Herein, we prepared two isomeric small D-A molecules with different sulfur atom positions (TBP-MPA and i-TBP-MPA), which display strong and broad absorption in the UV-visible region due to their strong intramolecular charge transfer characteristics. Compared to i-TBP-MPA, TBP-MPA demonstrates aggregation-induced photothermal enhancement (AIPE). Under simulated sunlight (1 kW m-2) irradiation, the stable temperature of TBP-MPA powder reached 60 °C, significantly higher than the 50 °C achieved by i-TBP-MPA. Experimental and theoretical results indicate that the S⋯N non-covalent interactions in TBP-MPA impart a more rigid conjugated framework to the molecule, inducing ordered molecular stacking during aggregation. This ordered stacking provides additional non-radiative transition channels between TBP-MPA molecules, enhancing their photothermal performance in the aggregated state. Under 1 sun irradiation, TBP-MPA achieved a water evaporation rate of 1.0 kg m-2 h-1, surpassing i-TBP-MPA's rate of 0.92 kg m-2 h-1.

4.
Angew Chem Int Ed Engl ; : e202409421, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136328

RÉSUMÉ

Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b':5,6-b''] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g-1 and 275 mAh g-1 at 0.2 A g-1 in ether-based and carbonate-based electrolyte respectively) and outstanding rate capability (79 mAh g-1 at 50 A g-1 in ether-based electrolyte and 124 mAh g-1 at 10 A g-1 in carbonate-based electrolyte). Moreover, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion batteries, which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex-situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.

5.
J Am Chem Soc ; 146(27): 18771-18780, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38935700

RÉSUMÉ

Chiral three-dimensional (3D) perovskites exhibit exceptional optoelectronic characteristics and inherent chiroptical activity, which may overcome the limitations of low-dimensional chiral optoelectronic devices and achieve superior performance. The integrated chip of high-performance arbitrary polarized light detection is one of the aims of chiral optoelectronic devices and may be achieved by chiral 3D perovskites. Herein, we first fabricate the wafer-scale integrated full-Stokes polarimeter by the synergy of unprecedented chiral 3D perovskites (R/S-PyEA)Pb2Br6 and one-step capillary-bridge assembly technology. Compared with the chiral low-dimensional perovskites, chiral 3D perovskites present smaller exciton binding energies of 57.3 meV and excellent circular dichroism (CD) absorption properties, yielding excellent circularly polarized light (CPL) photodetectors with an ultrahigh responsivity of 86.7 A W-1, an unprecedented detectivity exceeding 4.84 × 1013 Jones, a high anisotropy factor of 0.42, and high-fidelity CPL imaging with 256 pixels. Moreover, the anisotropic crystal structure also enables chiral 3D perovskites to have a large linear-polarization response with a polarized ratio of 1.52. The combination of linear-polarization and circular-polarization discrimination capabilities guarantees the achievement of a full-Stokes polarimeter. Our study provides new research insights for the large-scale patterning wafer integration of high-performance chiroptical devices.

6.
Angew Chem Int Ed Engl ; 63(34): e202407355, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-38837587

RÉSUMÉ

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.

7.
Small ; 20(32): e2401054, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38488748

RÉSUMÉ

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

8.
Molecules ; 29(6)2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38542866

RÉSUMÉ

The development of effective inhibitors targeting the Kirsten rat sarcoma viral proto-oncogene (KRASG12D) mutation, a prevalent oncogenic driver in cancer, represents a significant unmet need in precision medicine. In this study, an integrated computational approach combining structure-based virtual screening and molecular dynamics simulation was employed to identify novel noncovalent inhibitors targeting the KRASG12D variant. Through virtual screening of over 1.7 million diverse compounds, potential lead compounds with high binding affinity and specificity were identified using molecular docking and scoring techniques. Subsequently, 200 ns molecular dynamics simulations provided critical insights into the dynamic behavior, stability, and conformational changes of the inhibitor-KRASG12D complexes, facilitating the selection of lead compounds with robust binding profiles. Additionally, in silico absorption, distribution, metabolism, excretion (ADME) profiling, and toxicity predictions were applied to prioritize the lead compounds for further experimental validation. The discovered noncovalent KRASG12D inhibitors exhibit promises as potential candidates for targeted therapy against KRASG12D-driven cancers. This comprehensive computational framework not only expedites the discovery of novel KRASG12D inhibitors but also provides valuable insights for the development of precision treatments tailored to this oncogenic mutation.


Sujet(s)
Simulation de dynamique moléculaire , Tumeurs , Humains , Protéines proto-oncogènes p21(ras)/génétique , Simulation de docking moléculaire , Mutation
9.
Angew Chem Int Ed Engl ; 63(21): e202400769, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38544401

RÉSUMÉ

Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (µ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.

10.
Adv Mater ; 36(23): e2401370, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38373399

RÉSUMÉ

Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.

11.
Angew Chem Int Ed Engl ; 63(10): e202318143, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38190621

RÉSUMÉ

In the development of high-performance organic solar cells (OSCs), the self-organization of organic semiconductors plays a crucial role. This study focuses on the precisely manipulation of molecular assemble via tuning alkyl side-chain topology in a series of low-cost nonfused-ring electron acceptors (NFREAs). Among the three NFREAs investigated, DPA-4, which possesses an asymmetric alkyl side-chain length, exhibits a tight packing in the crystal and high crystallinity in the film, contributing to improved electron mobility and favorable film morphology for DPA-4. As a result, the OSC device based on DPA-4 achieves an excellent power conversion efficiency of 16.67 %, ranking among the highest efficiencies for NFREA-based OSCs.

12.
Angew Chem Int Ed Engl ; 62(49): e202311686, 2023 Dec 04.
Article de Anglais | MEDLINE | ID: mdl-37858963

RÉSUMÉ

Two exotic 6-cantilever small molecular platforms, characteristic of quite different molecular configurations of propeller and quasi-plane, are established by extremely two-dimensional conjugated extension. When applied in small molecular acceptors, the only two cases of CH25 and CH26 that could contain six terminals and such broad conjugated backbones have been afforded thus far, rendering featured absorptions, small reorganization and exciton binding energies. Moreover, their distinctive but completely different molecular geometries result in sharply contrasting nanoscale film morphologies. Finally, CH26 contributes to the best device efficiency of 15.41 % among acceptors with six terminals, demonstrating two pioneered yet highly promising 6-cantilever molecular innovation platforms.

13.
Angew Chem Int Ed Engl ; 62(44): e202312630, 2023 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-37704576

RÉSUMÉ

Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.

14.
Angew Chem Int Ed Engl ; 62(41): e202309600, 2023 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-37610865

RÉSUMÉ

Due to the pronounced anisotropic response to circularly polarized light, chiral hybrid organic-inorganic metal halides have been regarded as promising candidates for the application in nonlinear chiroptics, especially for the second-harmonic generation circular dichroism (SHG-CD) effect. However, designing novel lead-free chiral hybrid metal halides with large anisotropy factors and high laser-induced damage thresholds (LDT) of SHG-CD remains challenging. Herein, we develop the first chiral hybrid germanium halide, (R/S-NEA)3 Ge2 I7 ⋅H2 O (R/S-NGI), and systematically investigated its linear and nonlinear chiroptical properties. S-NGI and R-NGI exhibit large anisotropy factors (gSHG-CD ) of 0.45 and 0.48, respectively, along with a high LDT of 38.46 GW/cm2 ; these anisotropy factors were the highest values among the reported lead-free chiral hybrid metal halides. Moreover, the effective second-order nonlinear optical coefficient of S-NGI could reach up to 0.86 pm/V, which was 2.9 times higher than that of commercial Y-cut quartz. Our findings facilitate a new avenue toward lead-free chiral hybrid metal halides, and their implementation in nonlinear chiroptical applications.

15.
Nat Commun ; 14(1): 4707, 2023 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-37543678

RÉSUMÉ

Given that bromine possesses similar properties but extra merits of easily synthesizing and polarizing comparing to homomorphic fluorine and chlorine, it is quite surprising very rare high-performance brominated small molecule acceptors have been reported. This may be caused by undesirable film morphologies stemming from relatively larger steric hindrance and excessive crystallinity of bromides. To maximize the advantages of bromides while circumventing weaknesses, three acceptors (CH20, CH21 and CH22) are constructed with stepwise brominating on central units rather than conventional end groups, thus enhancing intermolecular packing, crystallinity and dielectric constant of them without damaging the favorable intermolecular packing through end groups. Consequently, PM6:CH22-based binary organic solar cells render the highest efficiency of 19.06% for brominated acceptors, more excitingly, a record-breaking efficiency of 15.70% when further thickening active layers to ~500 nm. By exhibiting such a rare high-performance brominated acceptor, our work highlights the great potential for achieving record-breaking organic solar cells through delicately brominating.

16.
ACS Nano ; 17(10): 9611-9621, 2023 May 23.
Article de Anglais | MEDLINE | ID: mdl-37166018

RÉSUMÉ

Metal-octaaminophthalocyanine (MOAPc)-based 2D conductive metal-organic frameworks (cMOFs) have shown great potential in several applications, including sensing, energy storage, and electrocatalysis, due to their bimetallic characteristics. Here, we report a detailed metal substitution study on a family of isostructural cMOFs with Co2+, Ni2+, and Cu2+ as both the metal nodes and the metal centers in the MOAPc ligands. We observed that different metal nodes had variations in the reaction kinetics, particle sizes, and crystallinities. Importantly, the electronic structure and conductivity were found to be dependent on both types of metal sites in the 2D cMOFs. Ni-NiOAPc was found to be the most conductive one among the nine possible combinations with a conductivity of 54 ± 4.8 mS/cm. DFT calculations revealed that monolayer Ni-NiOAPc has neither the smallest bandgap nor the highest charge carrier mobility. Hence its highest conductivity stems from its high crystallinity. Collectively, these results provide structure property relationships for MOAPc-based cMOFs with amino coordination units.

17.
Light Sci Appl ; 12(1): 75, 2023 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-36935450

RÉSUMÉ

Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the traditionally used preparation methods with a long period and limited product yield have curtailed the commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as Cs2Na0.9Ag0.1InCl6:Ln3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high luminous performance are all realized by our proposed strategy, which has shown excellent availability towards commercialization.

18.
Chemistry ; 29(26): e202300029, 2023 May 08.
Article de Anglais | MEDLINE | ID: mdl-36806228

RÉSUMÉ

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.

19.
Adv Mater ; 35(17): e2210836, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36744546

RÉSUMÉ

2D Ruddlesden-Popper (2D RP) perovskite, with attractive environmental and structural stability, has shown great application in perovskite solar cells (PSCs). However, the relatively inferior photovoltaic efficiencies of 2D PSCs limit their further application. To address this issue, ß-​fluorophenylethanamine (ß-​FPEA) as a novel spacer cation is designed and employed to develop stable and efficient quasi-2D RP PSCs. The strong dipole moment of the ß-​FPEA enhances the interactions between the cations and [PbI6 ]4- octahedra, thus improving the charge dissociation of quasi-2D RP perovskite. Additionally, the introduction of the ß-​FPEA cation optimizes the energy level alignment, improves the crystallinity, stabilizes both the mixed phase and a-FAPbI3 phase of the quasi-2D RP perovskite film, prolongs the carrier diffusion length, increases the carrier lifetime and decreases the trap density. By incorporating the ß-​FPEA, the quasi-2D RP PSCs exhibit a power conversion efficiency (PCE) of 16.77% (vs phenylethylammonium (PEA)-based quasi-2D RP PSCs of 12.81%) on PEDOT:PSS substrate and achieve a champion PCE of 19.11% on the PTAA substrate. It is worth noting that the unencapsulated ß-​FPEA-based quasi-2D RP PSCs exhibit considerably improved thermal and moisture stability. These findings provide an effective strategy for developing novel spacer cations for high-performance 2D RP PSCs.

20.
Angew Chem Int Ed Engl ; 62(13): e202300800, 2023 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-36720713

RÉSUMÉ

It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18 Fe12 Al70 , consisting of Ni2 Al3 and Ni3 Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18 Fe12 Al70 delivers an extremely low overpotential to trigger both HER (η100 =188 mV) and OER (η100 =345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2 Al3 and Ni3 Fe alloys on the HER process is confirmed based on theoretical calculation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE