Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Glia ; 72(1): 206-221, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37737058

RÉSUMÉ

Microglia have been found to acquire unique region-dependent deleterious features with age and diseases that contribute to neuronal dysfunction and degeneration in the brain. However, it remains unknown whether microglia exhibit similar phenotypic heterogeneity in the spinal cord. Here, we performed a regional analysis of spinal cord microglia in 3-, 16-, 23-, and 30-month-old mice. Using light and electron microscopy, we discovered that spinal cord microglia acquire an increasingly activated phenotype during the course of aging regardless of regional location. However, aging causes microglia in the ventral but not dorsal horn to lose their spatial organization. Aged ventral horn microglia also aggregate around the somata of motor neurons and increase their contacts with motor synapses, which have been shown to be lost with age. These findings suggest that microglia may affect the ability of motor neurons to receive and relay motor commands during aging. To generate additional insights about aging spinal cord microglia, we performed RNA-sequencing on FACS-isolated microglia from 3-, 18-, 22-, and 29-month-old mice. We found that spinal cord microglia acquire a similar transcriptional identity as those in the brain during aging that includes altered expression of genes with roles in microglia-neuron interactions and inflammation. By 29 months of age, spinal cord microglia exhibit additional and unique transcriptional changes known and predicted to cause senescence and to alter lysosomal and ribosomal regulation. Altogether, this work provides the foundation to target microglia to ameliorate aged-related changes in the spinal cord, and particularly on the motor circuit.


Sujet(s)
Microglie , Motoneurones , Souris , Animaux , Microglie/métabolisme , Motoneurones/métabolisme , Moelle spinale/métabolisme , Synapses/métabolisme , Inflammation/métabolisme
2.
JCI Insight ; 8(9)2023 05 08.
Article de Anglais | MEDLINE | ID: mdl-37154159

RÉSUMÉ

Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.


Sujet(s)
Sclérose latérale amyotrophique , Motoneurones , Humains , Souris , Mâle , Femelle , Animaux , Sujet âgé , Motoneurones/métabolisme , Vieillissement/métabolisme , Sclérose latérale amyotrophique/génétique , Synapses/métabolisme , Primates
3.
J Surg Res ; 272: 37-50, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-34929499

RÉSUMÉ

BACKGROUND: Effective treatment of solid tumors requires multi-modality approaches. In many patients with stage IV liver disease, current treatments are not curative. Chimeric antigen receptor T cells (CAR-T) are an intriguing option following success in hematological malignancies, but this has not been translated to solid tumors. Limitations include sub-optimal delivery and elevated interstitial fluid pressures. We developed a murine model to test the impact of high-pressure regional delivery (HPRD) on trafficking to liver metastases (LM) and tumor response. MATERIALS AND METHODS: CAR-T were generated from CD45.1 mice and adoptively transferred into LM-bearing CD45.2 mice via regional or systemic delivery (RD, SD). Trafficking, tumor growth, and toxicity were evaluated with flow cytometry, tumor bioluminescence (TB, photons/sec log2-foldover baseline), and liver function tests (LFTs). RESULTS: RD of CAR-T was more effective at controlling tumor growth versus SD from post-treatment days (PTD) 2-7 (P = 0.002). HPRD resulted in increased CAR-T penetration versus low-pressure RD (LPRD, P = 0.004), suppression of tumor proliferation (P = 0.03), and trended toward improved long-term control at PTD17 (TB=3.7 versus 6.1, P = 0.47). No LFT increase was noted utilizing HPRD versus LPRD (AST/ALT P = 0.65/0.84) while improved LFTs in RD versus SD groups suggested better tumor control (HPRD AST/ALT P = 0.04/0.04, LPRD AST/ALT P = 0.02/0.02). CONCLUSIONS: Cellular immunotherapy is an emerging option for solid tumors. Our model suggests RD and HPRD improved CAR-T penetration into solid tumors with improved short-term tumor control. Barriers associated with SD can be overcome using RD techniques to maximize therapeutic delivery and HPRD may further augment efficacy without increased toxicity.


Sujet(s)
Tumeurs colorectales , Tumeurs du foie , Tumeurs , Récepteurs chimériques pour l'antigène , Animaux , Tumeurs colorectales/thérapie , Humains , Immunothérapie adoptive/méthodes , Tumeurs du foie/anatomopathologie , Souris , Tumeurs/thérapie , Lymphocytes T
4.
Vaccines (Basel) ; 9(8)2021 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-34451932

RÉSUMÉ

Metastatic liver tumors have presented challenges with the use of checkpoint inhibitors (CPIs), with only limited success. We hypothesize that regional delivery (RD) of CPIs can improve activity in the liver and minimize systemic exposure, thereby reducing immune-related adverse events (irAE). Using a murine model of colorectal cancer liver metastases (LM), we confirmed high levels of PD-L1 expression on the tumor cells and liver myeloid-derived suppressor cells (L-MDSC). In vivo, we detected improved LM response at 3 mg/kg on PTD7 via portal vein (PV) regional delivery as compared to 3 mg/kg via tail vein (TV) systemic delivery (p = 0.04). The minimal effective dose at PTD7 was 5 mg/kg (p = 0.01) via TV and 0.3 mg/kg (p = 0.02) via PV. We detected 6.7-fold lower circulating CPI antibody levels in the serum using the 0.3 mg/kg PV treatment compared to the 5 mg/kg TV cohort (p < 0.001) without increased liver toxicity. Additionally, 3 mg/kg PV treatment resulted in increased tumor cell apoptotic signaling compared to 5 mg/kg TV (p < 0.05). Therefore, RD of an anti-PD-1 CPI therapy for CRCLM may improve the therapeutic index by reducing the total dose required and limiting the systemic exposure. These advantages could expand CPI indications for liver tumors.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...