Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Food Microbiol ; 120: 104478, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38431324

RÉSUMÉ

An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised quantification of norovirus RNA in the absence of matrix and in oyster tissue samples. On average, results of the RT-dPCR assays were very similar to those obtained by RT-qPCR assays. The coefficient of variation (CV%) of norovirus GI results was, however, much lower for RT-dPCR than for RT-qPCR in intra-laboratory replicates (eight runs) and between the eight laboratories. The CV% of norovirus GII results was in the same range for both detection formats. Had in-house prepared dsDNA standards been used, the CV% of norovirus GII could have been in favor of the RT-dPCR assay. The ratio between RT-dPCR and RT-qPCR results varied per laboratory, despite using the distributed RT-qPCR dsDNA standards. The study indicates that the RT-dPCR assay is likely to increase uniformity of quantitative results between laboratories.


Sujet(s)
Norovirus , Ostreidae , Animaux , Humains , Norovirus/génétique , Réaction de polymérisation en chaine en temps réel/méthodes , Produits de la mer/analyse , ARN viral/génétique
3.
Methods Protoc ; 4(1)2021 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-33672247

RÉSUMÉ

Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this paper, we describe a simple concentration method based on polyethylene glycol (PEG) precipitation, followed by RNA extraction and a one-step quantitative reverse transcription PCR (qRT-PCR) for viral detection in wastewater. PEG-based concentration of viruses is a simple procedure which is not limited by the availability of expensive equipment and has reduced risk of disruption to consumable supply chains. The concentration and RNA extraction steps enable 900-1500× concentration of wastewater samples and sufficiently eliminates the majority of organic matter, which could inhibit the subsequent qRT-PCR assay. Due to the high variation in the physico-chemical properties of wastewater samples, we recommend the use of process control viruses to determine the efficiency of each step. This procedure enables the concentration and the extraction the DNA/RNA of different viruses and hence can be used for the surveillance of different viral targets for the comprehensive assessment of viral diseases in a community.

4.
Food Chem Toxicol ; 143: 111509, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32629089

RÉSUMÉ

Depuration of oysters can effectively reduce levels of E. coli, however, may not be effective in safeguarding against viral contamination (EFSA, 2012). These trials assess the removal of Norovirus Genogroups I and II (NoV GI and GII) and F + RNA bacteriophage genogroup II (FRNAP-II) from oysters under depuration using molecular and viability assay methods. Our results show consistently better removal of NoV GII compared with Nov GI. We found approximately 46% removal of NoV GII at 18 °C after 2 days and 60% after 5 days compared with a maximum of 16% NoV GI removal. Twice the rate of NoV GII removal was achieved at 18 °C compared with 8 °C after 5 days. Results suggest better NoV removal when depuration water salinity is close to that prevailing in the harvesting area. Trials investigating algal feeding, light/dark and disturbance from pump vibration did not show any significant effect. We found that FRNAP-II was more readily removed than NoV. No significant difference was found between the rate of removal (as measured by RT-qPCR) and inactivation (as measured by bioassay) of FRNAP-II. This indicates that reduction in FRNAP-II may be primarily due to physical removal (or destruction) rather than in situ inactivation of the virus.


Sujet(s)
Norovirus/physiologie , Ostreidae/virologie , Élevage , Animaux , Microbiologie alimentaire , Génotype , Norovirus/génétique , Photopériode , ARN viral/isolement et purification , RT-PCR , Salinité , Eau de mer , Température , Facteurs temps , Mouvements de l'eau
5.
Front Microbiol ; 11: 874, 2020.
Article de Anglais | MEDLINE | ID: mdl-32523561

RÉSUMÉ

Hepatitis A virus (HAV) is one of the most common causes of acute viral hepatitis in humans. Although HAV has a relatively small genome, there are several factors limiting whole genome sequencing such as PCR amplification artefacts and ambiguities in de novo assembly. The recently developed Oxford Nanopore technologies (ONT) allows single-molecule sequencing of long-size fragments of DNA or RNA using PCR-free strategies. We have sequenced the whole genome of HAV using a PCR-free approach by direct reverse-transcribed sequencing. We were able to sequence HAV cDNA and obtain reads over 7 kilobases in length containing almost the whole genome of the virus. The comparison of these raw long nanopore reads with the HAV reference wild type revealed a nucleotide sequence identity between 81.1 and 96.6%. By de novo assembly of all HAV reads we obtained a consensus sequence of 7362 bases, with a nucleotide sequence identity of 99.0% with the genome of the HAV strain pHM175/18f. When the assembly was performed using as reference the HAV strain pHM175/18f a consensus with a sequence similarity of 99.8 % was obtained. We have also used an ONT amplicon-based assay to sequence two fragments of the VP3 and VP1 regions which showed a sequence similarity of 100% with matching regions of the consensus sequence obtained using the direct cDNA sequencing approach. This study showed the applicability of ONT sequencing technologies to obtain the whole genome of HAV by direct cDNA nanopore sequencing, highlighting the utility of this PCR-free approach for HAV characterization and potentially other viruses of the Picornaviridae family.

6.
Food Environ Virol ; 11(3): 229-237, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-31165999

RÉSUMÉ

Human noroviruses are the leading cause of viral gastroenteritis. In the absence of a practical culture technique for routine analysis of infectious noroviruses, several methods have been developed to discriminate between infectious and non-infectious viruses by removing non-viable viruses prior to analysis by RT-qPCR. In this study, two such methods (RNase and porcine gastric mucin) which were designed to remove viruses with compromised capsids (and therefore assumed to be non-viable), were assessed for their ability to quantify viable F-specific RNA bacteriophage (FRNAP) and human norovirus following inactivation by UV-C or heat. It was found that while both methods could remove a proportion of non-viable viruses, a large proportion of non-viable virus remained to be detected by RT-qPCR, leading to overestimations of the viable population. A model was then developed to determine the proportion of RT-qPCR detectable RNA from non-viable viruses that must be removed by such methods to reduce overestimation to acceptable levels. In most cases, nearly all non-viable virus must be removed to reduce the log overestimation of viability to within levels that might be considered acceptable (e.g. below 0.5 log10). This model could be applied when developing alternative pre-treatment methods to determine how well they should perform to be comparable to established infectivity assays.


Sujet(s)
Capside/effets des radiations , Norovirus/composition chimique , Norovirus/effets des radiations , Inactivation virale/effets des radiations , Animaux , Biocatalyse , Infections à Caliciviridae , Capside/métabolisme , Infections à entérovirus/virologie , Mucines gastriques/pharmacologie , Température élevée , Humains , Norovirus/génétique , Norovirus/physiologie , Réaction de polymérisation en chaine en temps réel , Ribonucléases/composition chimique , Suidae , Rayons ultraviolets
7.
Water Res ; 105: 241-250, 2016 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-27619500

RÉSUMÉ

Bivalve shellfish have the capacity to accumulate norovirus (NoV) from waters contaminated with human sewage. Consequently, shellfish represent a major vector for NoV entry into the human food chain, leading to gastrointestinal illness. Identification of areas suitable for the safe cultivation of shellfish requires an understanding of NoV behaviour upon discharge of municipal-derived sewage into coastal waters. This study exploited the potential of edible mussels (Mytilus edulis) to accumulate NoV and employed the ISO method for quantification of NoV within mussel digestive tissues. To evaluate the spatial spread of NoV from an offshore sewage discharge pipe, mesh cages of mussels were suspended from moorings deployed in a 9 km2 grid array around the outfall. Caged mussels were retrieved after 30 days and NoV (GI and GII), total coliforms and E. coli enumerated. The experimentally-derived levels of NoV GI and GII in mussels were similar with total NoV levels ranging from 7 × 101 to 1.6 × 104 genome copies g-1 shellfish digestive gland (ΣGI + GII). NoV spread from the outfall showed a distinct plume which matched very closely to predictions from the tidally-driven effluent dispersal model MIKE21. A contrasting spatial pattern was observed for coliforms (range 1.7 × 102 to 2.1 × 104 CFU 100 g-1 shellfish tissue) and E. coli (range 0-1.2 × 103 CFU 100 g-1 shellfish tissue). These data demonstrate that hydrodynamic models may help inform effective exclusion zones for bivalve harvesting, whilst coliform/E. coli concentrations do not accurately reflect viral dispersal in marine waters and contamination of shellfish by sewage-derived viral pathogens.


Sujet(s)
Mytilus edulis , Norovirus/génétique , Animaux , Escherichia coli , Contamination des aliments , Humains , Eaux d'égout , Fruits de mer
8.
Appl Environ Microbiol ; 78(16): 5812-7, 2012 Aug.
Article de Anglais | MEDLINE | ID: mdl-22685151

RÉSUMÉ

The contamination of bivalve shellfish with norovirus from human fecal sources is recognized as an important human health risk. Standardized quantitative methods for the detection of norovirus in molluscan shellfish are now available, and viral standards are being considered in the European Union and internationally. This 2-year systematic study aimed to investigate the impact of the application of these methods to the monitoring of norovirus contamination in oyster production areas in the United Kingdom. Twenty-four monthly samples of oysters from 39 United Kingdom production areas, chosen to represent a range of potential contamination risk, were tested for norovirus genogroups I and II by using a quantitative real-time reverse transcription (RT)-PCR method. Norovirus was detected in 76.2% (643/844) of samples, with all sites returning at least one positive result. Both prevalences (presence or absence) and norovirus levels varied markedly between sites. However, overall, a marked winter seasonality of contamination by both prevalence and quantity was observed. Correlations were found between norovirus contamination and potential risk indicators, including harvesting area classifications, Escherichia coli scores, and environmental temperatures. A predictive risk score for norovirus contamination was developed by using a combination of these factors. In summary, this study, the largest of its type undertaken to date, provides a systematic analysis of norovirus contamination in commercial oyster production areas in the United Kingdom. The data should assist risk managers to develop control strategies to reduce the risk of human illness resulting from norovirus contamination of bivalve molluscs.


Sujet(s)
Norovirus/isolement et purification , Ostreidae/virologie , Animaux , Charge bactérienne , Escherichia coli/isolement et purification , Prévalence , Réaction de polymérisation en chaine en temps réel/méthodes , Saisons , Température , Royaume-Uni , Virologie/méthodes , Microbiologie de l'eau
9.
J Food Prot ; 75(2): 389-93, 2012 Feb.
Article de Anglais | MEDLINE | ID: mdl-22289603

RÉSUMÉ

Norovirus is the principal agent of bivalve shellfish-associated gastroenteric illness worldwide. Numerous studies using PCR have demonstrated norovirus contamination in a significant proportion of both oyster and other bivalve shellfish production areas and ready-to-eat products. By comparison, the number of epidemiologically confirmed shellfish-associated outbreaks is relatively low. This suggests that factors other than the simple presence or absence of virus RNA are important contributors to the amount of illness reported. This study compares norovirus RNA levels in oyster samples strongly linked to norovirus or norovirus-type illness with the levels typically found in commercial production areas (non-outbreak-related samples). A statistically significant difference between norovirus levels in the two sets of samples was observed. The geometric mean of the levels in outbreak samples (1,048 copies per g) was almost one order of magnitude higher than for positive non-outbreak-related samples (121 copies per g). Further, while none of the outbreak-related samples contained fewer than 152 copies per g, the majority of positive results for non-outbreak-related samples was below this level. These observations support the concept of a dose-response for norovirus RNA levels in shellfish and could help inform the establishment of threshold criteria for risk management.


Sujet(s)
Contamination des aliments/analyse , Norovirus/isolement et purification , Ostreidae/virologie , ARN viral/analyse , Fruits de mer/virologie , Charge virale , Animaux , Sécurité des produits de consommation , Épidémies de maladies , Microbiologie alimentaire , Gastroentérite/épidémiologie , Gastroentérite/virologie , Humains
10.
J Food Prot ; 73(2): 305-11, 2010 Feb.
Article de Anglais | MEDLINE | ID: mdl-20132676

RÉSUMÉ

Norovirus is the principal agent of bivalve shellfish-associated gastroenteric illness worldwide. Numerous studies using PCR have demonstrated norovirus contamination in a significant proportion of both oyster and other bivalve shellfish production areas and ready-to-eat products. By comparison, the number of epidemiologically confirmed shellfish-associated outbreaks is relatively low. This study attempts to compare norovirus RNA detection in Pacific oysters (Crassostrea gigas) by quantitative real-time reverse transcription PCR (RT-PCR) and human health risk. Self-reported customer complaints of illness in a restaurant setting (screened for credible norovirus symptoms) were compared with presence and levels of norovirus as determined by real-time RT-PCR for the batch of oysters consumed. No illness was reported for batches consistently negative for norovirus by real-time RT-PCR. However, norovirus was detected in some batches for which no illness was reported. Overall presence or absence of norovirus showed a significant association with illness complaints. In addition, the batch with the highest norovirus RNA levels also resulted in the highest rate of reported illness, suggesting a linkage between virus RNA levels and health risks. This study suggests that detection of high levels of norovirus RNA in oysters is indicative of a significantly elevated health risk. However, illness may not necessarily be reported after detection of norovirus RNA at low levels.


Sujet(s)
Crassostrea/microbiologie , Contamination des aliments/analyse , Norovirus/isolement et purification , RT-PCR/méthodes , Fruits de mer/microbiologie , Animaux , Infections à Caliciviridae/épidémiologie , Infections à Caliciviridae/virologie , Sécurité des produits de consommation , Microbiologie alimentaire , Gastroentérite/épidémiologie , Gastroentérite/virologie , Humains , ARN viral/analyse , RT-PCR/normes , Sensibilité et spécificité , Charge virale
11.
J Food Prot ; 71(7): 1427-33, 2008 Jul.
Article de Anglais | MEDLINE | ID: mdl-18680943

RÉSUMÉ

The human health risk associated with the consumption of molluscan shellfish grown in sewage-contaminated waters is well established. Noroviruses, which cause gastroenteritis, are the principal agents of shellfish-related illness. Fecal-indicator quality standards based on Escherichia coli are well established in Europe and elsewhere. However, norovirus outbreaks after consumption of shellfish meeting these standards still occur, and the need to improve consumer health protection is well recognized. Alternative approaches proposed include direct monitoring of viral pathogens and the use of alternative indicator organisms capable of providing a better indication of virus risk. This study applies a recently developed TaqMan PCR assay to assess norovirus contamination in shellfish. Comparison was made with E. coli as the existing sanitary standard and a male-specific RNA bacteriophage as a possible alternative. Two commercial pacific oyster (Crassostrea gigas) harvesting areas were monitored over a 31-month period. The results show peaks of norovirus contamination in both areas during winter months, with average levels approximately 17 times higher in oysters sampled October to March than during the remainder of the year, consistent with epidemiological data for the United Kingdom showing oyster-associated illness is confined to winter months. While there was no apparent association with E. coli, an association between levels of norovirus contamination and the male-specific RNA bacteriophage was noted, with average norovirus levels over 40 times higher in samples with male-specific RNA bacteriophage counts of >1,000 PFU/100 g than in samples with <100 PFU/100 g. Overall, these results suggest that norovirus monitoring in shellfish production areas could be an effective strategy for reduction of virus risk.


Sujet(s)
Contamination des aliments/analyse , Norovirus/isolement et purification , Ostreidae/virologie , RT-PCR/méthodes , Fruits de mer/virologie , Animaux , Marqueurs biologiques , Sécurité des produits de consommation , Microbiologie alimentaire , Gastroentérite/épidémiologie , Gastroentérite/microbiologie , Humains , Phages à ARN , Saisons , Eaux d'égout/virologie , Facteurs temps , Microbiologie de l'eau
12.
Appl Environ Microbiol ; 71(4): 1870-5, 2005 Apr.
Article de Anglais | MEDLINE | ID: mdl-15812014

RÉSUMÉ

Noroviruses (NoV), which are members of the family Caliciviridae, are the most important cause of outbreaks of acute gastroenteritis worldwide and are commonly found in shellfish grown in polluted waters. In the present study, we developed broadly reactive one-step TaqMan reverse transcription (RT)-PCR assays for the detection of genogroup I (GI) and GII NoV in fecal samples, as well as shellfish samples. The specificity and sensitivity of all steps of the assays were systematically evaluated, and in the final format, the monoplex assays were validated by using RNA extracted from a panel of 84 stool specimens, which included NoV strains representing 19 different genotypes (7 GI, 11 GII, and 1 GIV strains). The assays were further validated with 38 shellfish cDNA extracts previously tested by nested PCR. Comparison with a recently described real-time assay showed that our assay had significantly higher sensitivity and was at least as sensitive as the nested PCR. For stool specimens, a one-step duplex TaqMan RT-PCR assay performed as well as individual genogroup-specific monoplex assays. All other enteric viruses examined were negative, and no cross-reaction between genogroups was observed. These TaqMan RT-PCR assays provide rapid (less than 90 min), sensitive, and reliable detection of NoV and should prove to be useful for routine monitoring of both clinical and shellfish samples.


Sujet(s)
Norovirus/isolement et purification , Ostreidae/virologie , RT-PCR/méthodes , Fruits de mer/virologie , TAQ polymerase/métabolisme , Animaux , Infections à Caliciviridae/virologie , Fèces/virologie , Gastroentérite/virologie , Humains , Norovirus/génétique , Sensibilité et spécificité , Facteurs temps
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...