Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chemphyschem ; : e202400314, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38630012

RÉSUMÉ

Dissociative electron transfer in collisions between neutral potassium atoms and neutral ethanol molecules yields mainly OH-, followed by C2H5O-, O-, CH3 - and CH2 -. The dynamics of negative ions have been investigated by recording time-of-flight mass spectra in a wide range of collision energies from 17.5 to 350 eV in the lab frame, where the branching ratios show a relevant energy dependence for low/intermediate collision energies. The dominant fragmentation channel in the whole energy range investigated has been assigned to the hydroxyl anion in contrast to oxygen anion from dissociative electron attachment (DEA) experiments. This result shows the relevant role of the electron donor in the vicinity of the temporary negative ion formed allowing access to reactions which are not thermodynamically attained in DEA experiments. The electronic state spectroscopy of such negative ions, was obtained from potassium cation energy loss spectra in the forward scattering direction at 205 eV impact energy, showing a prevalent Feshbach resonance at 9.36±0.10 eV with σ O H * / σ C H * ${{\sigma }_{OH}^{^{\ast}}/{\sigma }_{CH}^{^{\ast}}}$ character, while a less pronounced σ O H * ${{\sigma }_{OH}^{^{\ast}}}$ contribution assigned to a shape resonance has been obtained at 3.16±0.10 eV. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom have been performed to support the experimental findings.

2.
J Phys Chem A ; 126(7): 1076-1084, 2022 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-35143199

RÉSUMÉ

In this contribution, we report a novel comprehensive investigation on negative ion formation from electron transfer processes mediated by neutral potassium atom collisions with neutral methanol molecules employing experimental and theoretical methodologies. Methanol collision-induced fragmentation yielding anion formation has been obtained by time-of-flight mass spectrometry in the wide energy range of 19 to 275 eV in the lab frame. The negative ions formed in such a collision process have been assigned to CH3O-, OH-, and O-, with a strong energy dependence especially at lower collision energies. The most intense fragment anions in the whole energy range investigated have been assigned to OH- and CH3O-. Additionally, the potassium cation energy loss spectrum in the forward scattering direction at 205 eV impact energy has revealed several features, where the two main electronic states accessible during the collision events have vertical electron affinities of -8.26 ± 0.20 and -10.36 ± 0.2 eV. Quantum chemical calculations have been performed for the lowest-lying unoccupied molecular orbitals of methanol in the presence of a potassium atom, lending strong support to the experimental findings.

3.
J Phys Chem A ; 124(41): 8496-8508, 2020 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-32941031

RÉSUMÉ

We investigate the methanol absorption spectrum in the range 5.5-10.8 eV to provide accurate and absolute cross-sections values. The main goal of this study is to provide a comprehensive analysis of methanol electronic-state spectroscopy by employing high-resolution vacuum ultraviolet (VUV) photoabsorption measurements together with state-of-the-art quantum chemical calculation methods. The VUV spectrum reveals several new features that are not previously reported in literature, for n > 3 in the transitions (nsσ(a') ← (2a″)) (1A' ← X̃1A') and (nsσ, npσ, npσ', ndσ ← (7a')) (1A' ← X̃1A'), and with particular relevance to vibrational progressions of the CH3 rocking mode, v11'(a″), mode in the (3pπ(a″) ← (2a″)) (21A' ← X̃1A') absorption band at 8.318 eV. The measured absolute photoabsorption cross-sections have subsequently been used to calculate the photolysis lifetime of methanol in the Earth's atmosphere from the ground level up to the limit of the stratosphere (50 km altitude). This shows that solar photolysis plays a negligible role in the removal of methanol from the lower atmosphere compared with competing sink mechanisms. Torsional potential energy scans, as a function of the internal rotation angle for the ground and first Rydberg states, have also been calculated as part of this investigation.

4.
Int J Mol Sci ; 20(22)2019 Nov 08.
Article de Anglais | MEDLINE | ID: mdl-31717298

RÉSUMÉ

In this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in a crossed molecular beam set up using a potassium atom as an electron donor. The negative ions formed in the collision region were mass analysed with a reflectron time-of-flight mass spectrometer. In the unimolecular decomposition of the temporary negative ion, the two most relevant yields were assigned to BO- and BO2-. Moreover, the collision-induced reaction was shown to be selective, i.e., at energies below 100 eV, it mostly formed BO-, while at energies above 100 eV, it mostly formed BO2-. In order to further our knowledge on the complex internal reaction mechanisms underlying the influence of the hybridization state of the boron atom, cyclohexylboronic acid was also investigated in the same collision energy range, where the main dissociation channel yielded BO2-. The experimental results for phenyl boronic acid are supported by ab initio theoretical calculations of the lowest unoccupied molecular orbitals (LUMOs) accessed in the collision process.


Sujet(s)
Acides boroniques/composition chimique , Cyclohexanes/composition chimique , Anions , Transport d'électrons , Électrons , Modèles moléculaires , Conformation moléculaire , Potassium/composition chimique , Thermodynamique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...