Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
BMC Bioinformatics ; 22(Suppl 12): 334, 2022 Jan 20.
Article de Anglais | MEDLINE | ID: mdl-35057729

RÉSUMÉ

BACKGROUND: The identification of cancer types is of great significance for early diagnosis and clinical treatment of cancer. Clustering cancer samples is an important means to identify cancer types, which has been paid much attention in the field of bioinformatics. The purpose of cancer clustering is to find expression patterns of different cancer types, so that the samples with similar expression patterns can be gathered into the same type. In order to improve the accuracy and reliability of cancer clustering, many clustering methods begin to focus on the integration analysis of cancer multi-omics data. Obviously, the methods based on multi-omics data have more advantages than those using single omics data. However, the high heterogeneity and noise of cancer multi-omics data pose a great challenge to the multi-omics analysis method. RESULTS: In this study, in order to extract more complementary information from cancer multi-omics data for cancer clustering, we propose a low-rank subspace clustering method called multi-view manifold regularized compact low-rank representation (MmCLRR). In MmCLRR, each omics data are regarded as a view, and it learns a consistent subspace representation by imposing a consistence constraint on the low-rank affinity matrix of each view to balance the agreement between different views. Moreover, the manifold regularization and concept factorization are introduced into our method. Relying on the concept factorization, the dictionary can be updated in the learning, which greatly improves the subspace learning ability of low-rank representation. We adopt linearized alternating direction method with adaptive penalty to solve the optimization problem of MmCLRR method. CONCLUSIONS: Finally, we apply MmCLRR into the clustering of cancer samples based on multi-omics data, and the clustering results show that our method outperforms the existing multi-view methods.


Sujet(s)
Algorithmes , Tumeurs , Analyse de regroupements , Biologie informatique , Humains , Tumeurs/génétique , Reproductibilité des résultats
2.
BMC Bioinformatics ; 20(Suppl 22): 718, 2019 Dec 30.
Article de Anglais | MEDLINE | ID: mdl-31888442

RÉSUMÉ

BACKGROUND: Identifying different types of cancer based on gene expression data has become hotspot in bioinformatics research. Clustering cancer gene expression data from multiple cancers to their own class is a significance solution. However, the characteristics of high-dimensional and small samples of gene expression data and the noise of the data make data mining and research difficult. Although there are many effective and feasible methods to deal with this problem, the possibility remains that these methods are flawed. RESULTS: In this paper, we propose the graph regularized low-rank representation under symmetric and sparse constraints (sgLRR) method in which we introduce graph regularization based on manifold learning and symmetric sparse constraints into the traditional low-rank representation (LRR). For the sgLRR method, by means of symmetric constraint and sparse constraint, the effect of raw data noise on low-rank representation is alleviated. Further, sgLRR method preserves the important intrinsic local geometrical structures of the raw data by introducing graph regularization. We apply this method to cluster multi-cancer samples based on gene expression data, which improves the clustering quality. First, the gene expression data are decomposed by sgLRR method. And, a lowest rank representation matrix is obtained, which is symmetric and sparse. Then, an affinity matrix is constructed to perform the multi-cancer sample clustering by using a spectral clustering algorithm, i.e., normalized cuts (Ncuts). Finally, the multi-cancer samples clustering is completed. CONCLUSIONS: A series of comparative experiments demonstrate that the sgLRR method based on low rank representation has a great advantage and remarkable performance in the clustering of multi-cancer samples.


Sujet(s)
Algorithmes , Tumeurs/génétique , Analyse de regroupements , Fouille de données , Bases de données génétiques , Humains , Réduction de dimensionnalité multifactorielle , Oncogènes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...