Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Pharmacol ; 13: 905708, 2022.
Article de Anglais | MEDLINE | ID: mdl-35899116

RÉSUMÉ

Current studies have found that butyrylcholinesterase (BuChE) replaces the biological function of acetylcholinesterase (AChE) in the late stage of Alzheimer's disease. Species in the genus of Fallopia, rich in polyphenols with diverse chemical structures and significant biological activities, are considered as an important resource for screening natural products to against AD. In this study, thirty-four compounds (1-34) were isolated from Fallopia dentatoalata (Fr. Schm.) Holub, and their inhibitory effects against AChE and BuChE were assessed. Compounds of the phenylpropanoid sucrose ester class emerged as the most promising members of the group, with 31-33 displaying moderate AChE inhibition (IC50 values ranging from 30.6 ± 4.7 to 56.0 ± 2.4 µM) and 30-34 showing potential inhibitory effects against BuChE (IC50 values ranging from 2.7 ± 1.7 to 17.1 ± 3.4 µM). Tacrine was used as a positive control (IC50: 126.7 ± 1.1 in AChE and 5.5 ± 1.7 nM in BuChE). Kinetic analysis highlighted compounds 31 and 32 as non-competitive inhibitors of AChE with Ki values of ∼30.0 and ∼34.4 µM, whilst 30-34 were revealed to competitively inhibit BuChE with Ki values ranging from ∼1.8 to ∼17.5 µM. Molecular binding studies demonstrated that 30-34 bound to the catalytic sites of BuChE with negative binding energies. The strong agreement between both in vitro and in silico studies highlights the phenylpropanoid sucrose esters 30-34 as promising candidates for use in future anti-cholinesterase therapeutics against Alzheimer's disease.

2.
Front Chem ; 9: 780304, 2021.
Article de Anglais | MEDLINE | ID: mdl-34900941

RÉSUMÉ

Mangrove-derived endophytes are rich in bioactive secondary metabolites with a variety of biological activities. Recently, a fungus Pseudofusicoccum sp. J003 was first isolated by our research group from mangrove species Sonneratia apetala Buch.-Ham. The subsequent chemical investigation of the methanol extract of the culture broth of this strain has led to the isolation of a new sesquiterpenoid named acorenone C (1), two alkaloids (2-3), four phenolic compounds (4-7), and four steroid derivatives (8-11). The new structure of 1 was established by extensive spectroscopic analysis, including 1D, 2D NMR spectroscopy, and HRESIMS. Its absolute configuration was elucidated by experimental ECD and ECD calculation. The in vitro AChE inhibitory, anti-inflammatory, and cytotoxic activities of the selected compounds were evaluated. The results showed that compound 1 showed mild AChE inhibitory activity, with an inhibition rate of 23.34% at the concentration of 50 µM. Compound 9 exerted a significant inhibitory effect against nitric oxide (NO) production in LPS-stimulated RAW 264.7 mouse macrophages, with an inhibition rate of 72.89% at the concentration of 25 µM, better than that of positive control L-NMMA. Compound 9 also displayed obvious inhibition effects on the growth of two human tumor cell lines, HL-60 and SW480 (inhibition rates 98.68 ± 0.97% and 60.40 ± 4.51%, respectively). The antimicrobial activities of the compounds (1-11) against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa were also tested; however, none of them showed antimicrobial activities.

3.
Molecules ; 26(22)2021 Nov 18.
Article de Anglais | MEDLINE | ID: mdl-34834049

RÉSUMÉ

Salvia przewalskii Maxim is a perennial plant from the genus Salvia (family Lamiaceae). The roots of S. przewalskii were long used as a traditional herb to treat blood circulation related illnesses in China. As part of our continuing interest in polycyclic natural products from medicinal plants, two unprecedented adducts comprised of a dinor-diterpenoid and a 9'-nor-rosmarinic acid derivative, linked by a 1,4-benzodioxane motif (1 and 2), were isolated from the roots of S. przewalskii. Their structures were established by extensive spectroscopic approaches including 1D, 2D NMR, and HRFABMS. Their cytotoxic activities against five human tumor cell lines were evaluated.


Sujet(s)
Cinnamates/analyse , Depsides/analyse , Diterpènes/analyse , Salvia/composition chimique , Antinéoplasiques d'origine végétale/analyse , Antinéoplasiques d'origine végétale/pharmacologie , Lignée cellulaire tumorale , Cinnamates/pharmacologie , Depsides/pharmacologie , Diterpènes/pharmacologie , Humains , Tumeurs/traitement médicamenteux , Racines de plante/composition chimique , Plantes médicinales/composition chimique ,
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE