Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Biol Chem ; : 107633, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39098534

RÉSUMÉ

DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologues DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, providing an explanation for the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unravelling a regulatory mechanism by which evolutionary conservation and diversification fine-tunes the activity of de novo DNA methyltransferases.

2.
Nat Commun ; 15(1): 6217, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39043678

RÉSUMÉ

Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1-nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1's ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR's interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1-nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.


Sujet(s)
DNA (cytosine-5-)-methyltransferase , Méthylation de l'ADN , DNA methyltransferase 3A , Histone , Nucléosomes , Nucléosomes/métabolisme , Nucléosomes/ultrastructure , DNA (cytosine-5-)-methyltransferase/métabolisme , DNA (cytosine-5-)-methyltransferase/composition chimique , DNA (cytosine-5-)-methyltransferase/génétique , Histone/métabolisme , Humains , Liaison aux protéines , Cryomicroscopie électronique , Animaux , Souris , Ubiquitination , Complexe répresseur Polycomb-2/métabolisme , Complexe répresseur Polycomb-2/composition chimique , Complexe répresseur Polycomb-2/génétique , Cellules HEK293 , Modèles moléculaires
3.
Genome Res ; 34(5): 740-756, 2024 06 25.
Article de Anglais | MEDLINE | ID: mdl-38744529

RÉSUMÉ

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Sujet(s)
Adénine , Méthylation de l'ADN , Tetrahymena thermophila , Tetrahymena thermophila/génétique , Tetrahymena thermophila/métabolisme , Adénine/métabolisme , Adénine/analogues et dérivés , Réplication de l'ADN , ADN des protozoaires/génétique , ADN des protozoaires/métabolisme
4.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-38600075

RÉSUMÉ

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Sujet(s)
DNA (cytosine-5-)-methyltransferase , Leucémie aigüe myéloïde , Humains , DNA (cytosine-5-)-methyltransferase/métabolisme , DNA methyltransferase 3A , Mutation , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/anatomopathologie , Méthylation de l'ADN/génétique , ADN/métabolisme
5.
Commun Biol ; 7(1): 76, 2024 01 10.
Article de Anglais | MEDLINE | ID: mdl-38195857

RÉSUMÉ

Flaviviruses, including Zika virus (ZIKV) and Dengue virus (DENV), rely on their non-structural protein 5 (NS5) for both replication of viral genome and suppression of host IFN signaling. DENV and ZIKV NS5s were shown to facilitate proteosome-mediated protein degradation of human STAT2 (hSTAT2). However, how flavivirus NS5s have evolved for species-specific IFN-suppression remains unclear. Here we report structure-function characterization of the DENV serotype 2 (DENV2) NS5-hSTAT2 complex. The MTase and RdRP domains of DENV2 NS5 form an extended conformation to interact with the coiled-coil and N-terminal domains of hSTAT2, thereby promoting hSTAT2 degradation in cells. Disruption of the extended conformation of DENV2/ZIKV NS5, but not the alternative compact state, impaired their hSTAT2 binding. Our comparative structural analysis of flavivirus NS5s further reveals a conserved protein-interaction platform with subtle amino-acid variations likely underpinning diverse IFN-suppression mechanisms. Together, this study uncovers a conformational selection mechanism underlying species-specific hSTAT2 inhibition by flavivirus NS5.


Sujet(s)
Flavivirus , Facteur de transcription STAT-2 , Protéines virales non structurales , Infection par le virus Zika , Virus Zika , Humains , Protéolyse , Spécificité d'espèce , Facteur de transcription STAT-2/métabolisme , Protéines virales non structurales/métabolisme
6.
J Biol Chem ; 299(12): 105433, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37926286

RÉSUMÉ

DNA methylation provides an important epigenetic mechanism that critically regulates gene expression, genome imprinting, and retrotransposon silencing. In plants, DNA methylation is prevalent not only in a CG dinucleotide context but also in non-CG contexts, namely CHG and CHH (H = C, T, or A) methylation. It has been established that plant non-CG DNA methylation is highly context dependent, with the +1- and +2-flanking sequences enriched with A/T nucleotides. How DNA sequence, conformation, and dynamics influence non-CG methylation remains elusive. Here, we report structural and biochemical characterizations of the intrinsic substrate preference of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a plant DNA methyltransferase responsible for establishing all cytosine methylation and maintaining CHH methylation. Among nine CHH motifs, the DRM2 methyltransferase (MTase) domain shows marked substrate preference toward CWW (W = A or T) motifs, correlating well with their relative abundance in planta. Furthermore, we report the crystal structure of DRM2 MTase in complex with a DNA duplex containing a flexible TpA base step at the +1/+2-flanking sites of the target nucleotide. Comparative structural analysis of the DRM2-DNA complexes provides a mechanism by which flanking nucleotide composition impacts DRM2-mediated DNA methylation. Furthermore, the flexibility of the TpA step gives rise to two alternative DNA conformations, resulting in different interactions with DRM2 and consequently temperature-dependent shift of the substrate preference of DRM2. Together, this study provides insights into how the interplay between the conformational dynamics of DNA and temperature as an environmental factor contributes to the context-dependent CHH methylation by DRM2.


Sujet(s)
Arabidopsis , Arabidopsis/métabolisme , ADN/métabolisme , Méthylation de l'ADN , ADN des plantes/métabolisme , Régulation de l'expression des gènes végétaux , Methyltransferases/génétique , Methyltransferases/métabolisme , Conformation d'acide nucléique , Nucléotides/métabolisme
7.
Nature ; 623(7987): 633-642, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37938770

RÉSUMÉ

Trimethylation of histone H3 lysine 9 (H3K9me3) is crucial for the regulation of gene repression and heterochromatin formation, cell-fate determination and organismal development1. H3K9me3 also provides an essential mechanism for silencing transposable elements1-4. However, previous studies have shown that canonical H3K9me3 readers (for example, HP1 (refs. 5-9) and MPP8 (refs. 10-12)) have limited roles in silencing endogenous retroviruses (ERVs), one of the main transposable element classes in the mammalian genome13. Here we report that trinucleotide-repeat-containing 18 (TNRC18), a poorly understood chromatin regulator, recognizes H3K9me3 to mediate the silencing of ERV class I (ERV1) elements such as LTR12 (ref. 14). Biochemical, biophysical and structural studies identified the carboxy-terminal bromo-adjacent homology (BAH) domain of TNRC18 (TNRC18(BAH)) as an H3K9me3-specific reader. Moreover, the amino-terminal segment of TNRC18 is a platform for the direct recruitment of co-repressors such as HDAC-Sin3-NCoR complexes, thus enforcing optimal repression of the H3K9me3-demarcated ERVs. Point mutagenesis that disrupts the TNRC18(BAH)-mediated H3K9me3 engagement caused neonatal death in mice and, in multiple mammalian cell models, led to derepressed expression of ERVs, which affected the landscape of cis-regulatory elements and, therefore, gene-expression programmes. Collectively, we describe a new H3K9me3-sensing and regulatory pathway that operates to epigenetically silence evolutionarily young ERVs and exert substantial effects on host genome integrity, transcriptomic regulation, immunity and development.


Sujet(s)
Rétrovirus endogènes , Extinction de l'expression des gènes , Histone , Protéines et peptides de signalisation intracellulaire , Lysine , Rétroéléments , Animaux , Humains , Souris , Chromatine/génétique , Chromatine/métabolisme , Protéines corépressives/métabolisme , Rétrovirus endogènes/génétique , Épigenèse génétique , Analyse de profil d'expression de gènes , Génome/génétique , Histone deacetylases/métabolisme , Histone/métabolisme , Protéines et peptides de signalisation intracellulaire/composition chimique , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Lysine/métabolisme , Méthylation , Domaines protéiques , Rétroéléments/génétique , Séquences répétées terminales/génétique , Animaux nouveau-nés , Lignée cellulaire
8.
Nucleic Acids Res ; 51(22): 12476-12491, 2023 Dec 11.
Article de Anglais | MEDLINE | ID: mdl-37941146

RÉSUMÉ

Oligomerization of DNMT3B, a mammalian de novo DNA methyltransferase, critically regulates its chromatin targeting and DNA methylation activities. However, how the N-terminal PWWP and ADD domains interplay with the C-terminal methyltransferase (MTase) domain in regulating the dynamic assembly of DNMT3B remains unclear. Here, we report the cryo-EM structure of DNMT3B under various oligomerization states. The ADD domain of DNMT3B interacts with the MTase domain to form an autoinhibitory conformation, resembling the previously observed DNMT3A autoinhibition. Our combined structural and biochemical study further identifies a role for the PWWP domain and its associated ICF mutation in the allosteric regulation of DNMT3B tetramer, and a differential functional impact on DNMT3B by potential ADD-H3K4me0 and PWWP-H3K36me3 bindings. In addition, our comparative structural analysis reveals a coupling between DNMT3B oligomerization and folding of its substrate-binding sites. Together, this study provides mechanistic insights into the allosteric regulation and dynamic assembly of DNMT3B.


Sujet(s)
, Humains , Régulation allostérique , Chromatine , DNA (cytosine-5-)-methyltransferase/métabolisme , Méthylation de l'ADN , DNA methyltransferase 3A , Mammifères/génétique , /composition chimique , Cryomicroscopie électronique
9.
J Biol Chem ; 299(7): 104842, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37209825

RÉSUMÉ

FAM86A is a class I lysine methyltransferase (KMT) that generates trimethylation on the eukaryotic translation elongation factor 2 (EEF2) at Lys525. Publicly available data from The Cancer Dependency Map project indicate high dependence of hundreds of human cancer cell lines on FAM86A expression. This classifies FAM86A among numerous other KMTs as potential targets for future anticancer therapies. However, selective inhibition of KMTs by small molecules can be challenging due to high conservation within the S-adenosyl methionine (SAM) cofactor binding domain among KMT subfamilies. Therefore, understanding the unique interactions within each KMT-substrate pair can facilitate developing highly specific inhibitors. The FAM86A gene encodes an N-terminal FAM86 domain of unknown function in addition to its C-terminal methyltransferase domain. Here, we used a combination of X-ray crystallography, the AlphaFold algorithms, and experimental biochemistry to identify an essential role of the FAM86 domain in mediating EEF2 methylation by FAM86A. To facilitate our studies, we also generated a selective EEF2K525 methyl antibody. Overall, this is the first report of a biological function for the FAM86 structural domain in any species and an example of a noncatalytic domain participating in protein lysine methylation. The interaction between the FAM86 domain and EEF2 provides a new strategy for developing a specific FAM86A small molecule inhibitor, and our results provide an example in which modeling a protein-protein interaction with AlphaFold expedites experimental biology.


Sujet(s)
Lysine , Methyltransferases , Modèles moléculaires , Domaines protéiques , Humains , Lysine/métabolisme , Méthylation , Methyltransferases/génétique , Methyltransferases/métabolisme , Facteur-2 d'élongation de la chaîne peptidique/génétique , Facteur-2 d'élongation de la chaîne peptidique/métabolisme , Adémétionine/métabolisme , Spécificité du substrat , Structure tertiaire des protéines , Cristallographie aux rayons X , Mutation ponctuelle
10.
Nat Commun ; 13(1): 4249, 2022 07 22.
Article de Anglais | MEDLINE | ID: mdl-35869095

RÉSUMÉ

DNA methyltransferase DNMT3B plays an essential role in establishment of DNA methylation during embryogenesis. Mutations of DNMT3B are associated with human diseases, notably the immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome. How ICF mutations affect DNMT3B activity is not fully understood. Here we report the homo-oligomeric structure of DNMT3B methyltransferase domain, providing insight into DNMT3B-mediated DNA methylation in embryonic stem cells where the functional regulator DNMT3L is dispensable. The interplay between one of the oligomer interfaces (FF interface) and the catalytic loop renders DNMT3B homo-oligomer a conformation and activity distinct from the DNMT3B-DNMT3L heterotetramer, and a greater vulnerability to certain ICF mutations. Biochemical and cellular analyses further reveal that the ICF mutations of FF interface impair the DNA binding and heterochromatin targeting of DNMT3B, leading to reduced DNA methylation in cells. Together, this study provides a mechanistic understanding of DNMT3B-mediated DNA methylation and its dysregulation in disease.


Sujet(s)
DNA (cytosine-5-)-methyltransferase , Déficits immunitaires , ADN/métabolisme , DNA (cytosine-5-)-methyltransferase/métabolisme , Méthylation de l'ADN/génétique , Face/malformations , Humains , Déficits immunitaires/génétique , Mutation , Maladies d'immunodéficience primaire
11.
J Mol Biol ; 434(9): 167516, 2022 05 15.
Article de Anglais | MEDLINE | ID: mdl-35240128

RÉSUMÉ

Stress granule (SG) formation mediated by Ras GTPase-activating protein-binding protein 1 (G3BP1) constitutes a key obstacle for viral replication, which makes G3BP1 a frequent target for viruses. For instance, the SARS-CoV-2 nucleocapsid (N) protein interacts with G3BP1 directly to suppress SG assembly and promote viral production. However, the molecular basis for the SARS-CoV-2 N - G3BP1 interaction remains elusive. Here we report biochemical and structural analyses of the SARS-CoV-2 N - G3BP1 interaction, revealing differential contributions of various regions of SARS-CoV-2 N to G3BP1 binding. The crystal structure of the NTF2-like domain of G3BP1 (G3BP1NTF2) in complex with a peptide derived from SARS-CoV-2 N (residues 1-25, N1-25) reveals that SARS-CoV-2 N1-25 occupies a conserved surface groove of G3BP1NTF2 via surface complementarity. We show that a φ-x-F (φ, hydrophobic residue) motif constitutes the primary determinant for G3BP1NTF2-targeting proteins, while the flanking sequence underpins diverse secondary interactions. We demonstrate that mutation of key interaction residues of the SARS-CoV-2 N1-25 - G3BP1NTF2 complex leads to disruption of the SARS-CoV-2 N - G3BP1 interaction in vitro. Together, these results provide a molecular basis of the strain-specific interaction between SARS-CoV-2 N and G3BP1, which has important implications for the development of novel therapeutic strategies against SARS-CoV-2 infection.


Sujet(s)
Protéines de la nucléocapside des coronavirus , Helicase , Protéines liant le poly-adp-ribose , Motifs et domaines d'intéraction protéique , RNA helicases , SARS-CoV-2 , Protéines de la nucléocapside des coronavirus/composition chimique , Protéines de la nucléocapside des coronavirus/génétique , Cristallographie , Helicase/composition chimique , Humains , Mutation , Phosphoprotéines/composition chimique , Phosphoprotéines/génétique , Protéines liant le poly-adp-ribose/composition chimique , RNA helicases/composition chimique , Protéines à motif de reconnaissance de l'ARN/composition chimique
12.
Anal Chem ; 93(27): 9634-9639, 2021 07 13.
Article de Anglais | MEDLINE | ID: mdl-34185510

RÉSUMÉ

Poly- and perfluoroalkyl substances (PFASs) are widely used in industrial products and consumer goods. Due to their extremely recalcitrant nature and potential bioaccumulation and toxicity, exposure to PFASs may result in adverse health outcomes in humans and wildlife. In this study, we developed a chemoproteomic strategy, based on the use of isotope-coded desthiobiotin-perfluorooctanephosphonic acid (PFOPA) probe and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, to profile PFAS-binding proteins. Targeted proteins were labeled with the desthiobiotin-PFOPA probe, digested with trypsin, and the ensuing desthiobiotin-conjugated peptides were enriched with streptavidin beads for LC-MS/MS analysis. We were able to identify 469 putative PFOPA-binding proteins. By conducting competitive binding experiments using low (10 µM) and high (100 µM) concentrations of stable isotope-labeled PFOPA probes, we further identified 128 nonredundant peptides derived from 75 unique proteins that exhibit selective binding toward PFOPA. Additionally, we demonstrated that one of these proteins, fatty acid-binding protein 5 (FABP5), could interact directly with PFASs, including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), and perfluorobutanesulfonic acid (PFBS). Furthermore, desthiobiotin-labeled lysine residues are located close to the fatty acid-binding pocket of FABP5, and the binding affinity varies with the structures of PFASs. Taken together, we developed a novel chemoproteomic method for interrogating the PFAS-interacting proteome. The identification of these proteins sets the stage for understanding the mechanisms through which exposure to PFASs confers adverse human health effects.


Sujet(s)
Acides alcanesulfoniques , Fluorocarbones , Protéome , Chromatographie en phase liquide , Polluants environnementaux , Protéines de liaison aux acides gras , Humains , Spectrométrie de masse en tandem
13.
Sci Adv ; 7(23)2021 06.
Article de Anglais | MEDLINE | ID: mdl-34078593

RÉSUMÉ

DNA methylation is a major epigenetic mechanism critical for gene expression and genome stability. In plants, domains rearranged methyltransferase 2 (DRM2) preferentially mediates CHH (H = C, T, or A) methylation, a substrate specificity distinct from that of mammalian DNA methyltransferases. However, the underlying mechanism is unknown. Here, we report structure-function characterization of DRM2-mediated methylation. An arginine finger from the catalytic loop intercalates into the nontarget strand of DNA through the minor groove, inducing large DNA deformation that affects the substrate preference of DRM2. The target recognition domain stabilizes the enlarged major groove via shape complementarity rather than base-specific interactions, permitting substrate diversity. The engineered DRM2 C397R mutation introduces base-specific contacts with the +2-flanking guanine, thereby shifting the substrate specificity of DRM2 toward CHG DNA. Together, this study uncovers DNA deformation as a mechanism in regulating the specificity of DRM2 toward diverse CHH substrates and illustrates methylome complexity in plants.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Animaux , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Protéines d'archée , ADN/métabolisme , Méthylation de l'ADN , Régulation de l'expression des gènes végétaux , Mammifères/génétique , Methyltransferases/génétique
14.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Article de Anglais | MEDLINE | ID: mdl-33999154

RÉSUMÉ

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Sujet(s)
COVID-19 , ARN polymérase ARN-dépendante de coronavirus/composition chimique , SARS-CoV-2/enzymologie , Protéines virales non structurales/composition chimique , Chromatographie sur gel , ARN polymérase ARN-dépendante de coronavirus/biosynthèse , ARN polymérase ARN-dépendante de coronavirus/génétique , Cristallographie aux rayons X , Dimérisation , Modèles moléculaires , Complexes multiprotéiques , Mutagenèse , Mutation , Conformation des protéines , Domaines protéiques , Cartographie d'interactions entre protéines , SARS-CoV-2/génétique , SARS-CoV-2/physiologie , Relation structure-activité , Protéines virales non structurales/génétique , Réplication virale
15.
Nat Genet ; 52(12): 1384-1396, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33139953

RÉSUMÉ

Trimethylated histone H3 lysine 27 (H3K27me3) regulates gene repression, cell-fate determination and differentiation. We report that a conserved bromo-adjacent homology (BAH) module of BAHCC1 (BAHCC1BAH) 'recognizes' H3K27me3 specifically and enforces silencing of H3K27me3-demarcated genes in mammalian cells. Biochemical, structural and integrated chromatin immunoprecipitation-sequencing-based analyses demonstrate that direct readout of H3K27me3 by BAHCC1 is achieved through a hydrophobic trimethyl-L-lysine-binding 'cage' formed by BAHCC1BAH, mediating colocalization of BAHCC1 and H3K27me3-marked genes. BAHCC1 is highly expressed in human acute leukemia and interacts with transcriptional corepressors. In leukemia, depletion of BAHCC1, or disruption of the BAHCC1BAH-H3K27me3 interaction, causes derepression of H3K27me3-targeted genes that are involved in tumor suppression and cell differentiation, leading to suppression of oncogenesis. In mice, introduction of a germline mutation at Bahcc1 to disrupt its H3K27me3 engagement causes partial postnatal lethality, supporting a role in development. This study identifies an H3K27me3-directed transduction pathway in mammals that relies on a conserved BAH 'reader'.


Sujet(s)
Carcinogenèse/génétique , Code histone/génétique , Histone/métabolisme , Leucémies/génétique , Protéines/génétique , Protéines/métabolisme , Animaux , Différenciation cellulaire/génétique , Lignée cellulaire tumorale , Immunoprécipitation de la chromatine , Régulation de l'expression des gènes/génétique , Extinction de l'expression des gènes/physiologie , Cellules HEK293 , Cellules HeLa , Humains , Cellules Jurkat , Leucémies/anatomopathologie , Méthylation , Souris , Souris transgéniques , Transplantation tumorale , Maturation post-traductionnelle des protéines/génétique , Transplantation hétérologue
16.
Nat Struct Mol Biol ; 27(10): 875-885, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-32778820

RÉSUMÉ

Suppressing cellular signal transducers of transcription 2 (STAT2) is a common strategy that viruses use to establish infections, yet the detailed mechanism remains elusive, owing to a lack of structural information about the viral-cellular complex involved. Here, we report the cryo-EM and crystal structures of human STAT2 (hSTAT2) in complex with the non-structural protein 5 (NS5) of Zika virus (ZIKV) and dengue virus (DENV), revealing two-pronged interactions between NS5 and hSTAT2. First, the NS5 methyltransferase and RNA-dependent RNA polymerase (RdRP) domains form a conserved interdomain cleft harboring the coiled-coil domain of hSTAT2, thus preventing association of hSTAT2 with interferon regulatory factor 9. Second, the NS5 RdRP domain also binds the amino-terminal domain of hSTAT2. Disruption of these ZIKV NS5-hSTAT2 interactions compromised NS5-mediated hSTAT2 degradation and interferon suppression, and viral infection under interferon-competent conditions. Taken together, these results clarify the mechanism underlying the functional antagonism of STAT2 by both ZIKV and DENV.


Sujet(s)
Facteur de transcription STAT-2/composition chimique , Facteur de transcription STAT-2/métabolisme , Protéines virales non structurales/composition chimique , Cryomicroscopie électronique , Cristallographie aux rayons X , Cytoplasme/métabolisme , Cellules HEK293 , Interactions hôte-pathogène , Humains , Sous-unité gamma du complexe ISGF3/métabolisme , Modèles moléculaires , Conformation des protéines , Facteur de transcription STAT-2/génétique , Protéines virales non structurales/métabolisme , Infection par le virus Zika/virologie
17.
Commun Biol ; 3(1): 468, 2020 08 25.
Article de Anglais | MEDLINE | ID: mdl-32843686

RÉSUMÉ

Cardiolipin, an essential mitochondrial physiological regulator, is synthesized from phosphatidic acid (PA) in the inner mitochondrial membrane (IMM). PA is synthesized in the endoplasmic reticulum and transferred to the IMM via the outer mitochondrial membrane (OMM) under mediation by the Ups1/Mdm35 protein family. Despite the availability of numerous crystal structures, the detailed mechanism underlying PA transfer between mitochondrial membranes remains unclear. Here, a model of Ups1/Mdm35-membrane interaction is established using combined crystallographic data, all-atom molecular dynamics simulations, extensive structural comparisons, and biophysical assays. The α2-loop, L2-loop, and α3 helix of Ups1 mediate membrane interactions. Moreover, non-complexed Ups1 on membranes is found to be a key transition state for PA transfer. The membrane-bound non-complexed Ups1/ membrane-bound Ups1 ratio, which can be regulated by environmental pH, is inversely correlated with the PA transfer activity of Ups1/Mdm35. These results demonstrate a new model of the fine conformational changes of Ups1/Mdm35 during PA transfer.


Sujet(s)
Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Phospholipides/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Sites de fixation , Transport biologique , Concentration en ions d'hydrogène , Mitochondries/génétique , Membranes mitochondriales/métabolisme , Protéines mitochondriales/composition chimique , Modèles moléculaires , Conformation moléculaire , Complexes multiprotéiques , Phospholipides/composition chimique , Liaison aux protéines , Multimérisation de protéines , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Relation structure-activité
18.
Nat Commun ; 11(1): 3355, 2020 07 03.
Article de Anglais | MEDLINE | ID: mdl-32620778

RÉSUMÉ

Mammalian DNA methylation patterns are established by two de novo DNA methyltransferases, DNMT3A and DNMT3B, which exhibit both redundant and distinctive methylation activities. However, the related molecular basis remains undetermined. Through comprehensive structural, enzymology and cellular characterization of DNMT3A and DNMT3B, we here report a multi-layered substrate-recognition mechanism underpinning their divergent genomic methylation activities. A hydrogen bond in the catalytic loop of DNMT3B causes a lower CpG specificity than DNMT3A, while the interplay of target recognition domain and homodimeric interface fine-tunes the distinct target selection between the two enzymes, with Lysine 777 of DNMT3B acting as a unique sensor of the +1 flanking base. The divergent substrate preference between DNMT3A and DNMT3B provides an explanation for site-specific epigenomic alterations seen in ICF syndrome with DNMT3B mutations. Together, this study reveals distinctive substrate-readout mechanisms of the two DNMT3 enzymes, implicative of their differential roles during development and pathogenesis.


Sujet(s)
Ilots CpG/génétique , DNA (cytosine-5-)-methyltransferase/métabolisme , Méthylation de l'ADN , Animaux , Domaine catalytique , Lignée cellulaire , DNA (cytosine-5-)-methyltransferase/génétique , DNA (cytosine-5-)-methyltransferase/ultrastructure , DNA methyltransferase 3A , Cellules souches embryonnaires , Dosages enzymatiques , Épigenèse génétique , Face/malformations , Humains , Souris , Mutation , Maladies d'immunodéficience primaire/génétique , Relation structure-activité , Spécificité du substrat/génétique , Diffraction des rayons X ,
19.
Nat Commun ; 11(1): 3723, 2020 07 24.
Article de Anglais | MEDLINE | ID: mdl-32709850

RÉSUMÉ

DNA methylation maintenance by DNMT1 is an essential process in mammals but molecular mechanisms connecting DNA methylation patterns and enzyme activity remain elusive. Here, we systematically analyzed the specificity of DNMT1, revealing a pronounced influence of the DNA sequences flanking the target CpG site on DNMT1 activity. We determined DNMT1 structures in complex with preferred DNA substrates revealing that DNMT1 employs flanking sequence-dependent base flipping mechanisms, with large structural rearrangements of the DNA correlating with low catalytic activity. Moreover, flanking sequences influence the conformational dynamics of the active site and cofactor binding pocket. Importantly, we show that the flanking sequence preferences of DNMT1 highly correlate with genomic methylation in human and mouse cells, and 5-azacytidine triggered DNA demethylation is more pronounced at CpG sites with flanks disfavored by DNMT1. Overall, our findings uncover the intricate interplay between CpG-flanking sequence, DNMT1-mediated base flipping and the dynamic landscape of DNA methylation.


Sujet(s)
Séquence nucléotidique , DNA (Cytosine-5-)-methyltransferase 1/composition chimique , DNA (Cytosine-5-)-methyltransferase 1/métabolisme , Méthylation de l'ADN , ADN/composition chimique , ADN/métabolisme , Animaux , Domaine catalytique , Cristallographie aux rayons X , DNA (Cytosine-5-)-methyltransferase 1/génétique , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/métabolisme , Techniques de knock-out de gènes , Cinétique , Souris knockout , Modèles moléculaires , Conformation d'acide nucléique , Oligonucléotides , Conformation des protéines , Spécificité du substrat
20.
Nat Commun ; 10(1): 5042, 2019 11 06.
Article de Anglais | MEDLINE | ID: mdl-31695039

RÉSUMÉ

N6-methyladenosine (m6A) modification provides an important epitranscriptomic mechanism that critically regulates RNA metabolism and function. However, how m6A writers attain substrate specificities remains unclear. We report the 3.1 Å-resolution crystal structure of human CCHC zinc finger-containing protein ZCCHC4, a 28S rRNA-specific m6A methyltransferase, bound to S-adenosyl-L-homocysteine. The methyltransferase (MTase) domain of ZCCHC4 is packed against N-terminal GRF-type and C2H2 zinc finger domains and a C-terminal CCHC domain, creating an integrated RNA-binding surface. Strikingly, the MTase domain adopts an autoinhibitory conformation, with a self-occluded catalytic site and a fully-closed cofactor pocket. Mutational and enzymatic analyses further substantiate the molecular basis for ZCCHC4-RNA recognition and a role of the stem-loop structure within substrate in governing the substrate specificity. Overall, this study unveils unique structural and enzymatic characteristics of ZCCHC4, distinctive from what was seen with the METTL family of m6A writers, providing the mechanistic basis for ZCCHC4 modulation of m6A RNA methylation.


Sujet(s)
Methyltransferases/composition chimique , Methyltransferases/métabolisme , ARN ribosomique 28S/métabolisme , Adénosine/analogues et dérivés , Adénosine/métabolisme , Séquence d'acides aminés , Sites de fixation , Domaine catalytique , Cristallographie aux rayons X , Humains , Méthylation , Methyltransferases/génétique , Modèles moléculaires , Liaison aux protéines , Conformation des protéines , Domaines protéiques , Spécificité du substrat , Doigts de zinc
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE