Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 46
Filtrer
1.
Chemosphere ; 364: 143024, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39111677

RÉSUMÉ

This experiment aimed to study the effects of adding the exogenous signaling molecule N-hexanoyl-homoserine lactone (C6-HSL) on the anaerobic digestion of food wastewater at low temperature (15 °C). Daily addition of 0.4 µmol C6-HSL increased the average chemical oxygen demand removal from 45.98% to 94.92%, while intermittent addition (adding 2 µmol C6-HSL every five days) increased it from 45.98% to 72.44%. These two modes of C6-HSL addition increased protease and acetate kinase activity by 47.99%/8.04% and 123.26%/127.91% respectively, and increased coenzyme F420 concentrations by 15.79% and 63.16%, respectively. The regulation of loosely bound extracellular polymeric substances synthesis was influenced by C6-HSL, which increased protein and polysaccharide content in sludge. The relative abundance of Firmicutes and Bacteroidetes increased following addition of C6-HSL. After continuous addition of C6-HSL, the relative abundance of related functional genes such as amy, apgM, aceE, and accC increased, indicating that methanogens obtained sufficient substrate. The abundance of glycolysis-related functional genes such as glk, pfk, pgi, tpiA, gap, pgk, gpmA, eno, and pyk increased after the addition of C6-HSL, ensuring the efficient transformation and absorption of organic matter by anaerobic sludge at low temperatures. This study provides new comprehensive insights into the mechanism behind the enhancement of food wastewater anaerobic digestion by C6-HSL at low temperature.


Sujet(s)
4-Butyrolactone , Matrice de substances polymériques extracellulaires , Eaux usées , Eaux usées/composition chimique , Anaérobiose , 4-Butyrolactone/analogues et dérivés , Matrice de substances polymériques extracellulaires/métabolisme , Eaux d'égout/composition chimique , Eaux d'égout/microbiologie , Élimination des déchets liquides/méthodes , Basse température , Bioréacteurs , Aliments , Analyse de la demande biologique en oxygène
2.
Nat Commun ; 15(1): 5714, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977701

RÉSUMÉ

Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.


Sujet(s)
Domaine catalytique , Histidine , Histidine/métabolisme , Histidine/composition chimique , Histidine/génétique , Myoglobine/génétique , Myoglobine/composition chimique , Myoglobine/métabolisme , Biocatalyse , Catalyse , Amino acyl-tRNA synthetases/génétique , Amino acyl-tRNA synthetases/métabolisme , Amino acyl-tRNA synthetases/composition chimique , Esterases/génétique , Esterases/métabolisme , Esterases/composition chimique , Hydrolyse , Escherichia coli/génétique , Escherichia coli/métabolisme
3.
J Environ Manage ; 359: 121077, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38718604

RÉSUMÉ

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Sujet(s)
Microplastiques , Polybromobiphényles , Eaux d'égout , Polybromobiphényles/toxicité , Polybromobiphényles/métabolisme , Microplastiques/toxicité , Anaérobiose , Espèces réactives de l'oxygène/métabolisme
4.
Heliyon ; 10(5): e26810, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38444478

RÉSUMÉ

Background: Epstein-Barr virus (EBV) is widely infected in humans and causes various diseases. Among them, microRNAs of EBV play a key role in the progression of EBV-associated febrile diseases. There're few specific indicators for rapid differential diagnosis of various febrile diseases associated with EBV, and the lack of more reliable screening methods with high diagnostic utility has led to spaces for improvement in the accurate diagnosis and efficient treatment of relevant patients, making EBV infection a complicated clinical problem. With recent advances in plasma microRNA testing, the apparent presence of EBV microRNAs in plasma can help screen for EBV infection. The gene networks targeted by these microRNAs can also indicate potential biomarkers of EBV-associated febrile diseases. This study aimed to identify some novel miRNAs as potential biomarkers for early diagnosis of respectively EBV-associated febrile diseases. Materials and methods: A total of 110 participants were recruited for this task. First, we performed high-throughput sequencing and preliminary PCR validation of differentially expressed miRNAs in 15 participants with EBV-associated fever (divided into common EBV carriers), infectious mononucleosis (IM) and chronic active EBV infection (CAEBV), EBV-associated Hemophagocytic Lymphohistiocytosis group (EBV-HLH), and 3 healthy individuals. After a comprehensive analysis, 10 miRNAs with abnormal expression were screened, and then qRT-PCR was performed in the rest of 95 participants to detect the validation of miRNAs expression in plasma samples. Thereafter, we further investigated their potential for clinical application in EBV-related febrile diseases by using a combination of Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Protein-protein interaction network analysis. Results: Through identification and detailed analysis of the obtained data, we found significant differences in the expression of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in blood samples from patients with different EBV-related febrile diseases. We found that the expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in plasma are indicative of determining different disease types of EBV-related febrile diseases, while EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets. Conclusion: The expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p suggest that they may be used as transcriptional features for early differential diagnosis of EBV-related febrile diseases, and EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets.

5.
Poult Sci ; 103(4): 103534, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38401226

RÉSUMÉ

The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.


Sujet(s)
microARN , Ostéochondrodysplasies , Animaux , Chondrocytes/physiologie , Poulets/génétique , Poulets/métabolisme , Ostéochondrodysplasies/génétique , Ostéochondrodysplasies/médecine vétérinaire , Protéine morphogénétique osseuse de type 6/métabolisme , microARN/génétique , microARN/métabolisme , Prolifération cellulaire , Apoptose
6.
J Vis Exp ; (203)2024 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-38284553

RÉSUMÉ

Knee osteoarthritis (KOA), a common degenerative joint disorder, is characterized by chronic pain and disability, which can progress to irreparable structural damage of the joint. Investigations into the link between articular cartilage, muscles, synovium, and other tissues surrounding the knee joint in KOA are of great importance. Currently, managing KOA includes lifestyle modifications, exercise, medication, and surgical interventions; however, the elucidation of the intricate mechanisms underlying KOA-related pain is still lacking. Consequently, KOA pain remains a key clinical challenge and a therapeutic priority. Tuina has been found to have a regulatory effect on the motor, immune, and endocrine systems, prompting the exploration of whether Tuina could alleviate KOA symptoms, caused by the upregulation of inflammatory factors, and further, if the inflammatory factors in skeletal muscle can augment the progression of KOA. We randomized 32 male Sprague Dawley (SD) rats (180-220 g) into four groups of eight animals each: antiPD-L1+Tuina (group A), model (group B), Tuina (group C), and sham surgery (group D). For groups A, B, and C, we injected 25 µL of sodium monoiodoacetate (MIA) solution (4 mg MIA diluted in 25 µL of sterile saline solution) into the right knee joint cavity, and for group D, the same amount of sterile physiological saline was injected. All the groups were evaluated using the least to most stressful tests (paw mechanical withdrawal threshold, paw withdrawal thermal latency, swelling of the right knee joint, Lequesne MG score, skin temperature) before injection and 2, 9, and 16 days after injection.


Sujet(s)
Gonarthrose , Rats , Mâle , Animaux , Gonarthrose/induit chimiquement , Gonarthrose/thérapie , Rat Sprague-Dawley , Sodium/effets indésirables , Articulation du genou/chirurgie , Douleur/étiologie , Injections articulaires/effets indésirables
7.
Environ Pollut ; 344: 123326, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38195026

RÉSUMÉ

Suitable operating parameters are one of the key factors to efficient and stable biological wastewater treatment of N, N-dimethylformamide (DMF) wastewater. In this study, an improved AnSBR-ASBR reactor (anaerobic sequencing batch reactor, AnSBR, and aerobic SBR, ASBR, run in series) was used to investigated the effects of operating conditions such as hydraulic residence time (HRT), AnSBR stirring speed and ASBR dissolved oxygen (DO) for DMF wastewater treatment. When HRT decreased from 24 h to 12 h, the average removal rates of COD by the AnSBR were 34.59% and 39.54%, respectively. Meanwhile, the removal rate of NH4+-N by ASBR decreased from 88.38% to 62.81%. The DMF removal rate reached the best at 18 h and the expression of dehydrogenase was the highest in the AnSBR. The abundance of Megasphaera, the dominant sugar-degrading bacteria in the AnSBR, continued to decline due to the decrease of HRT. The relative abundance of Methanobacterium gradually increased to 80.2% with the decrease of HRT and that hydrotrophic methanogenesis dominated the methanogenic process. The HRT decrease promoted butyrate and pyruvate metabolism in anaerobic sludge, but the proportion of glycolysis and methane metabolism decreased. The AnSBR-ASBR reactor had the best operation performance when HRT was 18 h, AnSBR speed was 220 r/min, and ASBR DO content was 3-4 mg/L. This study provided an effective reference for the reasonable selection of operating parameters in the treatment of DMF-containing wastewater by the AnSBR-ASBR.


Sujet(s)
Microbiote , Eaux usées , N,N-Diméthyl-formamide/métabolisme , Élimination des déchets liquides , Bioréacteurs/microbiologie , Eaux d'égout/microbiologie , Anaérobiose
8.
J Hazard Mater ; 465: 133071, 2024 03 05.
Article de Anglais | MEDLINE | ID: mdl-38008051

RÉSUMÉ

Thiram, an agricultural insecticide, has been demonstrated to induce tibial dyschondroplasia (TD) in avian species. Circular RNA (circRNAs), a novel class of functional biological macromolecules characterized by their distinct circular structure, play crucial roles in various biological processes and diseases. Nevertheless, the precise regulatory mechanism underlying non-coding RNA involvement in thiram-induced broiler tibial chondrodysplasia remains elusive. In this study, we established a broiler model of thiram exposure for 10 days to assess TD and obtain a ceRNA network by RNA sequencing. By analyzing the differentially expressed circRNAs network, we id entify that circ_003084 was significantly upregulated in TD cartilage. Elevated circ_003084 inhibited TD chondrocytes proliferation and differentiation in vitro but promote apoptosis. Mechanistically, circ_003084 competitively binds to miR-130c-5p and prevents miR-130c-5p to decrease the level of BMPR1A, which upregulates the expression of apoptosis genes Caspase 3, Caspase 9, Bax and Bcl2, and finally facilitates cell apoptosis. Taken together, these findings imply that circ_003084/miR-130c-5p/BMPR1A interaction regulated TD chicken chondrocyte proliferation, apoptosis, and differentiation. This is the first work to reveal the mechanism of regulation of circRNA-related ceRNA on thiram-induced TD, offering a key reference for environmental toxicology.


Sujet(s)
Phénomènes biologiques , microARN , Ostéochondrodysplasies , Animaux , Thirame , Ostéochondrodysplasies/induit chimiquement , Ostéochondrodysplasies/génétique , Poulets , Chondrocytes , ARN circulaire/pharmacologie , microARN/génétique , Prolifération cellulaire
9.
J Bone Joint Surg Am ; 105(19): 1527-1536, 2023 10 04.
Article de Anglais | MEDLINE | ID: mdl-37603599

RÉSUMÉ

BACKGROUND: Osteomyelitis causes marked disability and is one of the most challenging diseases for orthopaedists to treat because of the considerable rate of infection recurrence. In this study, we proposed and assessed the debridement-reconstruction-docking (DRD) system for the treatment of lower-extremity osteomyelitis. This procedure comprises 3 surgical stages and 2 preoperative assessments; namely, pre-debridement assessment, debridement, pre-reconstruction assessment, reconstruction, and docking-site management. We evaluated the use of the DRD system compared with the Ilizarov technique, which is defined as a 1-stage debridement, osteotomy, and bone transport. METHODS: This retrospective cohort included 289 patients who underwent either DRD or the Ilizarov technique for the treatment of lower-extremity osteomyelitis at a single institution between January 2013 and February 2021 and who met the eligibility criteria. The primary outcome was the rate of infection recurrence. Secondary outcomes included the external fixator index (EFI), refracture rate, and the Paley classification for osseous and functional results. An inverse-probability-weighted regression adjustment model was utilized to estimate the effect of the DRD system and Ilizarov technique on the treatment of lower-extremity osteomyelitis. RESULTS: A total of 131 and 158 patients underwent DRD or the Ilizarov technique, respectively. The inverse-probability-weighted regression adjustment model suggested that DRD was associated with a significant reduction in infection recurrence (risk ratio [RR], 0.26; 95% confidence interval [CI], 0.13 to 0.50; p < 0.001) and EFI (-6.9 days/cm, 95% CI; -8.3 to -5.5; p < 0.001). Patients in the DRD group had better Paley functional results than those in the Ilizarov group (ridit score, 0.55 versus 0.45; p < 0.001). There was no significant difference between the 2 groups in the rate of refracture (RR, 0.87; 95% CI, 0.42 to 1.79; p = 0.71) and Paley osseous results (ridit score, 0.51 versus 0.49; p = 0.39). CONCLUSIONS: In this balanced retrospective cohort of patients with lower-extremity osteomyelitis, the use of the DRD system was associated with a reduced rate of infection recurrence, a lower EFI, and better Paley functional results compared with the use of the Ilizarov technique. LEVEL OF EVIDENCE: Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.


Sujet(s)
Technique d'Ilizarov , Ostéomyélite , Fractures du tibia , Humains , Technique d'Ilizarov/effets indésirables , Études rétrospectives , Débridement/méthodes , Résultat thérapeutique , Fixateurs externes , Ostéomyélite/chirurgie , Membre inférieur/chirurgie , Fractures du tibia/chirurgie , Tibia/chirurgie
10.
J Hazard Mater ; 459: 132246, 2023 10 05.
Article de Anglais | MEDLINE | ID: mdl-37557047

RÉSUMÉ

Osmotic membrane bioreactors (OMBRs) are considered a suitable technology for treating wastewater containing tetracycline due to their high rejection and biodegradation efficiency. However, the impact of membrane fouling layer (i.e., chemical composition, microbial composition, and formation) on the filtration and biodegradation of tetracycline is still unclear. Herein, the effects of draw solute concentration and type on the formation of a membrane fouling layer for tetracycline filtration and its relationship with microbial activity were investigated. The results showed that over 99% of tetracycline was retained on the feed side by membrane rejection, and the fouling layer played an important role in tetracycline filtration. Specifically, membrane foulants resulted in a more hydrophilic membrane facilitating tetracycline filtration, while the tetracycline-degrading genera from the fouled membrane promoted tetracycline degradation. The structure equation model showed that tetracycline filtration dominated by electrostatic repulsion between tetracycline and the fouled membrane was more important than tetracycline degradation for tetracycline removal (path coefficient of 0.655 vs. 0.395). This study provided insights into the combined effect of membrane foulants and microorganisms on tetracycline removal.


Sujet(s)
Antibactériens , Membrane artificielle , Eaux usées , Tétracycline , Bioréacteurs
11.
Plant Dis ; 2023 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-36995766

RÉSUMÉ

Lettuce (Lactuca sativa) is a leafy vegetable that belongs to the family Asteraceae. It is widely cultivated and consumed around the world. In May 2022, lettuce plants (cv. 204) showing soft rot symptoms were observed in greenhouses in Fuhai District (25°18'N, 103°6'E), Kunming City, Yunnan Province, China. The disease incidence in three greenhouses (0.3 ha in size) was between 10% to 15%. The lower parts of the outer leaves showed brown and water-soaked symptoms, but at the same time the roots were asymptomatic. Sclerotinia species can cause soft decay on lettuce leaves, known as lettuce drop, which can produce symptoms partially resembling those of bacterial soft rot (Subbarao 1998). The absence of white mycelium or black sclerotia on the leaf surfaces of diseased plants indicated that Sclerotinia species were not responsible for the disease. Instead, it is more likely that bacterial pathogens were the cause. Fourteen diseased plants were sampled from three greenhouses, and potential pathogens were isolated from the leaf tissues of six plant individuals. Leaf samples were cut into pieces ca. 0.5 cm in length. The pieces were then surface-sterilized by dipping in 75% ethanol for 60 sec, followed by three successive rinses using sterile distilled water. The tissues were immersed in 250 µl of 0.9% saline in 2 mL microcentrifuge tubes and gently pressed down with grinding pestles for 10 sec. The tubes were let stand still for 20 min. Aliquots (20 µl) 100-fold dilutions of the tissue suspensions were plated onto Luria-Bertani (LB) plates and incubated at 28°C for 24 h. Three single colonies were picked from each LB plate and restreaked five times for purity. After purification, eighteen strains were obtained, and nine of these were identified by 16S rDNA sequencing using the universal primer pair 27F/1492R (Weisburg et al. 1991). Six out of nine strains (6/9) belonged to the genus Pectobacterium (OP968950-OP968952, OQ568892- OQ568894), two strains (2/9) belonged to the genus Pantoea (OQ568895 and OQ568896), and one strain (1/9) belonged to Pseudomonas sp. (OQ568897). Since the Pectobacterium strains shared identical 16S rDNA sequence, strains CM22112 (OP968950), CM22113 (OP968951) and CM22132 (OP968952) were selected as representative strains for further testing. The 16S rDNA sequences of Pectobacterium strains were 100% identical to that of the P. polaris strain NIBIO 1392 (NR_159086.1). To identify the strains to the species level, multilocus sequence analysis (MLSA) was performed using sequences of six housekeeping genes acnA, gapA, icdA, mdh, proA and rpoS (OP972517-OP972534) (Ma et al. 2007; Waleron et al. 2008). Phylogenetic analysis showed that the strains clustered with P. polaris type strain NIBIO1006T (Dees et al. 2017). They were all capable of utilizing citrate, which is an important biochemical feature in distinguishing P. polaris from its most closely related sister species P. parvum (Pasanen et al. 2020). Lettuce plants (cv. 204), at the rosette stage, were inoculated with the strains CM22112 and CM22132 by injecting 100 µl of bacterial suspensions (107 CFU·mL-1) into the lower parts of the leaf; for the controls, 100 µl of saline was used instead. Inoculated plants were incubated at room temperature (23°C) and 90% relative humidity. Five days after inoculation, only the bacteria-inoculated lettuce showed severe soft rot symptoms. Similar results were observed in two independent experiments. Bacterial colonies were obtained from the infected lettuce leaves, which showed identical sequences to P. polaris strains CM22112 and CM22132. Therefore, these strains fulfilled Koch's postulates for lettuce soft rot. P. polaris is prevalent on potato in many countries (Dees et al. 2017). To our knowledge, this is the first report of P. polaris causing soft rot on lettuce in China. This disease could seriously affect the appearance and saleability of lettuce. Further research on the epidemiology and management strategies of the disease is needed.

12.
Front Microbiol ; 14: 1041072, 2023.
Article de Anglais | MEDLINE | ID: mdl-36760506

RÉSUMÉ

In order to investigate the effects of dietary probiotics supplementation on laying performance, egg quality, serum hormone levels, immunity, antioxidant, and gut microbiota of layers at different laying stages, a total of 168 Tianfu green shell laying hens (28-day-old) were randomly divided into 2 treatments: a non-supplemented control diet (NC), and diet supplemented with 10 g/kg of probiotics, respectively. Each treatment had 6 replicates with 14 hens per replicate. The feeding trial lasted for 54 weeks. The results showed that the supplementation of probiotics significantly increased the average egg weight, improved egg quality (p < 0.05) and ovarian development. Meanwhile, probiotics increased the serum hormone levels of E2 and FSH, and antioxidant indices T-AOC and T-SOD (p < 0.05) of laying hens at different laying stages (p < 0.05), decreased the expression of proinflammatory factors including IL-1, IL-6 and TNF-α (p < 0.05). Furthermore, using 16S rRNA sequencing, we observed that the addition of probiotics increased the distribution of Firmicutes, Bacteroidota and Synergistota at early laying period. Meanwhile, Bacteroidota, Actinobacteriota, Verrucomicrobiota and Deferribacterota showed an increasing trend at the peak of egg production. The relative abundance of Firmicutes, Desulfobacterota and Actinobacteriota were significantly increased at the late laying period. Moreover, PICRUSt2 and BugBase analysis revealed that at the late laying period, the probiotics supplementation not only enriched many significant gene clusters of the metabolism of terpenoids and polyketide, genetic information processing, enzyme families, translation, transcription, replication and repair, and nucleotide metabolism, but also decreased the proportion of potential pathogenic bacteria. To sum up, these data show that the addition of probiotics not only improves the performance, egg quality, ovarian development and immune function of laying hens at different laying period, but also improves the gut microbiota of layers, thus enhances production efficiency.

13.
Chemosphere ; 319: 137959, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36709845

RÉSUMÉ

Tetracycline in wastewater can pose adverse impacts on the environment and human health. Forward osmosis (FO) is a promising method to reject antibiotics due to its low energy demand and high rejection rate. Tetracycline rejection during FO is a complicated process. Mechanistic models have been developed to describe antibiotic rejection by the FO membrane under ideal conditions but cannot be applied to real wastewater. Herein, the effects of draw concentration, pH, and solute type on the fate of tetracycline during FO were investigated by combining experimentation, factor analysis, and artificial neural network (ANN) modeling. High draw concentrations led to high convection that favored tetracycline diffusion. Low draw pH helped reject antibiotics potentially due to the decreased tortuosity and pore size of the FO membrane. When different draw solutes were tested, both convection and electrostatic interaction exerted effects on tetracycline retention on the FO membrane surface, and steric hindrance could further affect the amount of tetracycline in the draw solution. Exploratory factor analysis (EFA) showed that tetracycline rejection was a combined result of convection, steric hindrance, and electrostatic interactions. Path analysis revealed the significant roles of initial conductivity and draw pH in tetracycline rejection. Eight representative input variables were selected from 13 observed explanatory variables using redundancy analysis (RDA), based on which an ANN was trained and successfully predicted tetracycline diffusion and transfer through the FO membrane. These results have provided practical and predictive insights in the development of FO processes for efficient treatment of pharmaceutical wastewater.


Sujet(s)
Eaux usées , Purification de l'eau , Humains , Purification de l'eau/méthodes , Membrane artificielle , Antibactériens , Tétracycline , Osmose , Solutions
14.
Sensors (Basel) ; 22(22)2022 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-36433420

RÉSUMÉ

To investigate the safety of train collisions with live intruders under high-speed operation, a new 3D finite element laminated model of live intruder filling was constructed based on reconstruction using physical 3D scanning, with three outer layers of the model simulating the skin, three inner layers simulating bone, and internal filling simulating internal organs. The model was simulated in LS-DYNA with pendulum side collision, and the force-time and force-displacement curves of the collision between the pendulum and the living intruder were obtained, which were consistent with the curve trend of the results of the cadaver pendulum collision test by Viano in 1989, and the accuracy of the finite element model of the intruder was verified. Through the simulation calculation of high-speed collision between the train and two kinds of living intrusions, the maximum acceleration of the train body, the maximum lifting of the wheel pair, the deformation of the cowcatcher, and the maximum central load on the cowcatcher during the collision can be obtained. The results of the study show that at a collision speed of 110 km/h and different collision positions, the collision risk factor between the train and heavier organisms is relatively high, and the risk arising from frontal collisions is generally greater than that of offset collisions; despite this, all the indicators such as the maximum acceleration of the train, the maximum lift of the wheel pairs, the reduction in the length of the cowcatcher discharge per 5 m of space, and the maximum central load borne by the cowcatcher discharge are lower than the EN15227 standard. Additionally, the safety of the train is not affected and the components can work reliably.


Sujet(s)
Accélération , Phénomènes mécaniques , Simulation numérique , Collecte de données
15.
Gels ; 8(7)2022 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-35877522

RÉSUMÉ

Chronic refractory wounds are one of the most serious complications of diabetes, and the effects of common treatments are limited. Chiral hydrogel combined with dimethyloxalyglycine (DMOG) as a dressing is a promising strategy for the treatment of chronic wounds. In this research, we have developed a DMOG-loaded supramolecular chiral amino-acid-derivative hydrogel for wound dressings for full-thickness skin regeneration of chronic wounds. The properties of the materials, the ability of sustained release drugs, and the ability to promote angiogenesis were tested in vitro, and the regeneration rate and repair ability of full-thickness skin were tested in vivo. The chiral hydrogel had the ability to release drugs slowly. It can effectively promote cell migration and angiogenesis in vitro, and promote full-thickness skin regeneration and angiogenesis in vivo. This work offers a new approach for repairing chronic wounds completely through a supramolecular chiral hydrogel loaded with DMOG.

16.
Ecotoxicol Environ Saf ; 242: 113924, 2022 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-35908532

RÉSUMÉ

Thiram pollution is one of the main causes of tibial dyschondroplasia (TD) induced by feed sources. Several studies have speculated that miRNA, circRNA and lncRNA may have significant impact on the development of TD, however, the specific mRNAs and noncoding RNAs and their respective regulatory mechanisms and functions in the development of TD have not been explored. Therefore, in this present study, we screened the differentially expressed mRNA, miRNA, circRNA and lncRNA by whole-transcriptome sequencing (RNA-seq) and differentially expressed genes (DEGs) enrichment, as well as constructed the interaction network among the mRNA-miRNA, mRNA-lncRNA and mRNA-miRNA-circRNA. The sequencing results were verified by fluorescence real-time quantitative PCR (RT-qPCR). The results obtained in this study, revealed that the cells were atrophied and disordered in the TD group, and the expression of BMP6, TGF-ß and VEGF were significantly reduced. A total of 141 mRNAs, 10 miRNAs, 23 lncRNAs and 35 circRNAs of DEGs were obtained (p<0.05) Theses DEGs were enriched in the adhere junction and insulin signaling pathways. In addition, the mRNA-miRNA-circRNA network suggested that several pivotal ceRNA showed a regulatory relationship between the transcripts with miRNA, circRNA or lncRNA. Taken together, the results in the present study, represent an insight for further functional research on the ceRNA regulatory mechanism of TD in broilers.


Sujet(s)
microARN , Ostéochondrodysplasies , ARN long non codant , Animaux , Poulets/génétique , Poulets/métabolisme , Réseaux de régulation génique , microARN/métabolisme , Ostéochondrodysplasies/induit chimiquement , Ostéochondrodysplasies/génétique , ARN circulaire , ARN long non codant/génétique , ARN messager/génétique , ARN messager/métabolisme , Thirame
17.
Sci Total Environ ; 829: 154406, 2022 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-35276150

RÉSUMÉ

Soil microbial fuel cells (MFCs) have been applied for the in situ remediation of soils polluted by single antibiotics. However, the investigation of only single antibiotic pollution has hindered MFC application in real-world soil remediation, where the effects of multiple antibiotics with similar chemical structures on the fate of antibiotics and their corresponding antibiotic resistance genes (ARGs) remain unknown. In this study, antibiotic removal rates, microbial community compositions, metabolite compositions, and ARG abundances were investigated in soil MFCs by adding two commonly used antibiotics (sulfadiazine, SDZ, and sulfamethoxazole, SMX), and comparing them with the addition of only a single antibiotic (SDZ). The antibiotic removal rate was higher in the soil MFC with addition of mixed antibiotics compared to the single antibiotic due to enhanced biodegradation efficiency in both the upper (57.24% of the initial antibiotic concentration) and lower layers (57.07% of the initial concentration) of the antibiotic-polluted soils. Bacterial community diversity in the mixed antibiotic conditions increased, and this likely resulted from the decreased toxicity of intermediates produced during antibiotic biodegradation. Moreover, the addition of mixed antibiotics led to lower risks of ARG release into soil environments, as reflected by higher abundances of host bacteria in the single antibiotic treatment. These results encourage the further development of soil MFC technology for in situ remediation of antibiotic-polluted soils.


Sujet(s)
Sources d'énergie bioélectrique , Sol , Antibactériens/pharmacologie , Bactéries/génétique , Dépollution biologique de l'environnement , Résistance microbienne aux médicaments/génétique , Gènes bactériens , Microbiologie du sol , Sulfaméthoxazole
19.
J Hazard Mater ; 423(Pt A): 127040, 2022 02 05.
Article de Anglais | MEDLINE | ID: mdl-34474366

RÉSUMÉ

Osmotic membrane bioreactors (OMBRs) have been applied to enhance removal of antibiotics, however, information on the effects of molecular structures on the behavior of antibiotics is still lacking. Herein, adsorption kinetics, transformation pathways, and membrane rejection mechanisms of OMBRs were investigated by adding two typical antibiotics (i.e., sulfadiazine, SDZ, and tetracycline hydrochloride, TC-HCl). 80.70-91.12% of TC-HCl was removed by adsorption and biodegradation, while 17.50-75.14% of SDZ was removed by membrane rejection; this depended on its concentration due to reduced electrostatic interactions and hydrophobic adsorption. The adsorption capacity of TC-HCl (i.e., 1.34±0.01 mg/g) was significantly higher than that of SDZ (i.e., 0.18±0.03 mg/g) due to enhanced π-π interactions, hydrogen bonding and improved electrostatic interactions. The abundant production of polysaccharide-like substances from TC-HCl biodegradation contributed to microbial metabolism and thus enhanced microbial function during TC-HCl biotransformation. The primary degradation pathways were determined by microbial function analysis, and the primary intermediates from TC-HCl degradation were less toxic than those from SDZ degradation due to the different reactions of amino groups. These results and the corresponding mechanism provide a theoretical foundation for the further development of OMBR technology for highly efficient treatment of antibiotic wastewater.


Sujet(s)
Antibactériens , Bioréacteurs , Structure moléculaire , Osmose , Sulfadiazine
20.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-34947654

RÉSUMÉ

Scanning electron microscopy (SEM) plays a crucial role in the characterization of nanoparticles. Unfortunately, due to the limited resolution, existing imaging techniques are insufficient to display all detailed characteristics at the nanoscale. Hardware-oriented techniques are troubled with costs and material properties. Computational approaches often prefer blurry results or produce a less meaningful high-frequency noise. Therefore, we present a staged loss-driven neural networks model architecture to transform low-resolution SEM images into super-resolved ones. Our approach consists of two stages: first, residual channel attention network (RCAN) with mean absolute error (MAE) loss was used to get a better peak signal-to-noise ratio (PSNR). Then, discriminators with adversarial losses were activated to reconstruct high-frequency texture features. The quantitative and qualitative evaluation results indicate that compared with other advanced approaches, our model achieves satisfactory results. The experiment in AgCl@Ag for photocatalytic degradation confirms that our proposed method can bring realistic high-frequency structural detailed information rather than meaningless noise. With this approach, high-resolution SEM images can be acquired immediately without sample damage. Moreover, it provides an enhanced characterization method for further directing the preparation of nanoparticles.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE