Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 67
Filtrer
1.
Cell Rep ; 43(5): 114199, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38728138

RÉSUMÉ

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Sujet(s)
Électrodes implantées , Moelle spinale , Animaux , Moelle spinale/physiologie , Souris , Potentiels d'action/physiologie , Activité motrice/physiologie , Neurones/physiologie , Locomotion/physiologie , Souris de lignée C57BL , Mâle
2.
Exp Cell Res ; 437(2): 114016, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38537746

RÉSUMÉ

Glioblastoma (GBM) is the most aggressive and life-threatening brain tumor, characterized by its highly malignant and recurrent nature. DNA damage-regulated autophagy modulator 1 (DRAM-1) is a p53 target gene encoding a lysosomal protein that induces macro-autophagy and damage-induced programmed cell death in tumor growth. However, the precise mechanisms underlying how DRAM-1 affects tumor cell proliferation through regulation of lysosomal function and autophagic flux stability remain incompletely understood. We found that DRAM-1 expressions were evidently down-regulated in high-grade glioma and recurrent GBM tissues. The upregulation of DRAM-1 could increase mortality of primary cultured GBM cells. TEM analysis revealed an augmented accumulation of aberrant lysosomes in DRAM-1-overexpressing GBM cells. The assay for lysosomal pH and stability also demonstrated decreasing lysosomal membrane permeabilization (LMP) and impaired lysosomal acidity. Further research revealed the detrimental impact of lysosomal dysfunction, which impaired the autophagic flux stability and ultimately led to GBM cell death. Moreover, downregulation of mTOR phosphorylation was observed in GBM cells following upregulation of DRAM-1. In vivo and in vitro experiments additionally illustrated that the mTOR inhibitor rapamycin increased GBM cell mortality and exhibited an enhanced antitumor effect.


Sujet(s)
Glioblastome , Protéines membranaires , Humains , Autophagie/physiologie , Prolifération cellulaire , Glioblastome/métabolisme , Lysosomes/métabolisme , Protéines membranaires/métabolisme , Récidive tumorale locale/métabolisme , Sérine-thréonine kinases TOR/métabolisme
3.
J Neural Eng ; 21(1)2024 02 01.
Article de Anglais | MEDLINE | ID: mdl-38237175

RÉSUMÉ

Peripheral nerve interfaces (PNIs) are electrical systems designed to integrate with peripheral nerves in patients, such as following central nervous system (CNS) injuries to augment or replace CNS control and restore function. We review the literature for clinical trials and studies containing clinical outcome measures to explore the utility of human applications of PNIs. We discuss the various types of electrodes currently used for PNI systems and their functionalities and limitations. We discuss important design characteristics of PNI systems, including biocompatibility, resolution and specificity, efficacy, and longevity, to highlight their importance in the current and future development of PNIs. The clinical outcomes of PNI systems are also discussed. Finally, we review relevant PNI clinical trials that were conducted, up to the present date, to restore the sensory and motor function of upper or lower limbs in amputees, spinal cord injury patients, or intact individuals and describe their significant findings. This review highlights the current progress in the field of PNIs and serves as a foundation for future development and application of PNI systems.


Sujet(s)
Amputés , Nerfs périphériques , Humains , Amputation chirurgicale , Électrodes , Paralysie/chirurgie
4.
Annu Rev Biomed Eng ; 25: 185-205, 2023 06 08.
Article de Anglais | MEDLINE | ID: mdl-37289556

RÉSUMÉ

Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.


Sujet(s)
Longévité , Neurosciences , Animaux , Humains , Électrodes , Encéphale/physiologie , Potentiels d'action/physiologie , Électrodes implantées
5.
Front Oncol ; 13: 1172234, 2023.
Article de Anglais | MEDLINE | ID: mdl-37274249

RÉSUMÉ

Objective: Lung cancer is one of the most common malignant tumors in humans. Adenocarcinoma of the lung is another of the most common types of lung cancer. In clinical medicine, physicians rely on the information provided by pathology tests as an important reference for the fifinal diagnosis of many diseases. Thus, pathological diagnosis is known as the gold standard for disease diagnosis. However, the complexity of the information contained in pathology images and the increase in the number of patients far exceeds the number of pathologists, especially in the treatment of lung cancer in less-developed countries. Methods: This paper proposes a multilayer perceptron model for lung cancer histopathology image detection, which enables the automatic detection of the degree of lung adenocarcinoma infifiltration. For the large amount of local information present in lung cancer histopathology images, MLP IN MLP (MIM) uses a dual data stream input method to achieve a modeling approach that combines global and local information to improve the classifification performance of the model. In our experiments, we collected 780 lung cancer histopathological images and prepared a lung histopathology image dataset to verify the effectiveness of MIM. Results: The MIM achieves a diagnostic accuracy of 95.31% and has a precision, sensitivity, specificity and F1-score of 95.31%, 93.09%, 93.10%, 96.43% and 93.10% respectively, outperforming the diagnostic results of the common network model. In addition, a number of series of extension experiments demonstrated the scalability and stability of the MIM. Conclusions: In summary, MIM has high classifification performance and substantial potential in lung cancer detection tasks.

6.
Cell Rep ; 42(6): 112554, 2023 06 27.
Article de Anglais | MEDLINE | ID: mdl-37235473

RÉSUMÉ

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation are often compromised by adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-nanoelectronic threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over 8 months at a markedly low charge injection of 0.25 nC/phase. Quantified histological analyses show that chronic ICMS by StimNETs induces no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially selective neuromodulation at low currents, which lessens risk of tissue damage or exacerbation of off-target side effects.


Sujet(s)
Cortex somatosensoriel , Souris , Animaux , Cortex somatosensoriel/physiologie , Électrodes , Stimulation électrique/méthodes , Électrodes implantées
7.
bioRxiv ; 2023 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-36865195

RÉSUMÉ

Intracortical microstimulation (ICMS) enables applications ranging from neuroprosthetics to causal circuit manipulations. However, the resolution, efficacy, and chronic stability of neuromodulation is often compromised by the adverse tissue responses to the indwelling electrodes. Here we engineer ultraflexible stim-Nanoelectronic Threads (StimNETs) and demonstrate low activation threshold, high resolution, and chronically stable ICMS in awake, behaving mouse models. In vivo two-photon imaging reveals that StimNETs remain seamlessly integrated with the nervous tissue throughout chronic stimulation periods and elicit stable, focal neuronal activation at low currents of 2 µA. Importantly, StimNETs evoke longitudinally stable behavioral responses for over eight months at markedly low charge injection of 0.25 nC/phase. Quantified histological analysis show that chronic ICMS by StimNETs induce no neuronal degeneration or glial scarring. These results suggest that tissue-integrated electrodes provide a path for robust, long-lasting, spatially-selective neuromodulation at low currents which lessen risks of tissue damage or exacerbation of off-target side-effects.

8.
Cancer Rep (Hoboken) ; 6(4): e1798, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36916294

RÉSUMÉ

BACKGROUND: The role and mechanism of centromeric protein N (CENP-N), which has been associated with the development of various cancer types, are yet unclear in stomach adenocarcinoma (STAD). METHODS: Data from the Cancer Genome Atlas and Genotype-Tissue Expression were used to determine whether CENP-N expression was altered in STAD tumors compared to normal tissues. Xiantao was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis on CENP-N. The relationship between CENP-N expression and immune cell infiltration was assessed using TCGA database. The expression of CENP-N in STAD and surrounding tissues was confirmed using immunohistochemical staining and the correlation between CENP-N expression and clinicopathological characteristics was examined. The effects of CENP-N knockdown by siRNA on proliferation were measured by CCK-8 and EdU assays in AGS cells. Following siRNA transfection, flow cytometry was performed to evaluate cell cycle and apoptotic alterations in AGS cells. The effect of CENP-N knockdown on the expression level of related proteins was detected by Westren blot. RESULTS: CENP-N was highly expressed in STAD tissues, which was confirmed by our immunohistochemistry results. The degree of invasion, TNM stage, and lymph node metastases were all strongly associated with CENP-N expression. CENP-N was essential for the cell cycle, DNA replication, chromosomal segregation, and nuclear division; there was a positive correlation between CENP-N expression and infiltrating Th2 and NK CD56dim cells and a negative correlation between CENP-N expression and mast, pDC, NK, and B cell infiltration. When CENP-N expression in AGS cells was knocked down, cell proliferation dramatically reduced (p < .05) and the percentage of cells in the S and G2-M phases decreased significantly (p < .05). Silencing CENP-N significantly promoted the apoptosis of AGS cells (p < .05). Mechanistic investigations showed that silencing CENP-N expression may inhibit STAD proliferation through the Cyclin E1 and promote STAD apoptosis through the Bcl-2/Bax. CONCLUSION: According to our data, CENP-N acts as an oncogene in STAD and may be a viable therapeutic target.


Sujet(s)
Adénocarcinome , Tumeurs de l'estomac , Humains , Protéines chromosomiques nonhistones/génétique , Protéines chromosomiques nonhistones/métabolisme , Marqueurs biologiques , Petit ARN interférent , Tumeurs de l'estomac/anatomopathologie , Centromère/métabolisme , Centromère/anatomopathologie
9.
Exp Mol Pathol ; 129: 104850, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36623636

RÉSUMÉ

Colorectal cancer (CRC) is a common gastrointestinal tumour with increasing incidence worldwide. However, the underlying molecular mechanism of CRC proliferation is not completely clear. Diversin,as an ankyrin repeat-containing protein, is upregulated in various solid tumours and accelerates cancer progression by promoting cell proliferation and increasing S phase fraction of cells. In this study, 71 CRC samples and corresponding adjacent tissue samples were included. The expression of diversin in tissues was verified via immunohistochemical analysis. The MTS assay and flow cytometry (FCM) was used to measure cell proliferation and cell cycle. Results of immunohistochemical analysis revealed that diversin was highly expressed in human CRC tissues and was significantly associated with tumour differentiation, clinical stage and lymph node metastasis. The analysis based on the CRC data from The Cancer Genome Atlas (TCGA) database showed that a high expression of diversin correlated with the poor prognosis of CRC. Results of the MTS assay indicated that the overexpression of diversin promoted the proliferation of CRC cells, while its downregulation had an inhibitory effect on CRC cell proliferation. FCM analysises presented that diversin increased the flux of the CRC cell cycle from G1 to S and regulated cycle-related proteins, namely, P21, P27, cyclin E, CDK2, cyclin D and CDK4. The results suggest that diversin contributes to CRC proliferation that involves the distribution of the cell cycle. In CRC tissues, the expression of diversin has closely related to the prognosis. The higher the expression levels of diversin, the worse the prognosis. In vitro, diversin could increase the proliferative ability of CRC cells through the G1-S checkpoint and JNK signalling pathway, confirming that diversin contributes to CRC development.


Sujet(s)
Protéines du cycle cellulaire , Tumeurs colorectales , Protéines du cytosquelette , Humains , Cycle cellulaire/génétique , Points de contrôle du cycle cellulaire , Protéines du cycle cellulaire/effets des médicaments et des substances chimiques , Protéines du cycle cellulaire/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Tumeurs colorectales/génétique , Tumeurs colorectales/métabolisme , Tumeurs colorectales/anatomopathologie , Protéines du cytosquelette/génétique , Protéines du cytosquelette/métabolisme , Régulation de l'expression des gènes tumoraux
10.
Nat Biomed Eng ; 7(4): 520-532, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36192597

RÉSUMÉ

Penetrating flexible electrode arrays can simultaneously record thousands of individual neurons in the brains of live animals. However, it has been challenging to spatially map and longitudinally monitor the dynamics of large three-dimensional neural networks. Here we show that optimized ultraflexible electrode arrays distributed across multiple cortical regions in head-fixed mice and in freely moving rats allow for months-long stable electrophysiological recording of several thousand neurons at densities of about 1,000 neural units per cubic millimetre. The chronic recordings enhanced decoding accuracy during optogenetic stimulation and enabled the detection of strongly coupled neuron pairs at the million-pair and millisecond scales, and thus the inference of patterns of directional information flow. Longitudinal and volumetric measurements of neural couplings may facilitate the study of large-scale neural circuits.


Sujet(s)
Phénomènes électrophysiologiques , Rodentia , Rats , Souris , Animaux , Électrodes implantées , Phénomènes électrophysiologiques/physiologie , Encéphale/physiologie , Neurones/physiologie
11.
Biomaterials ; 291: 121905, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36403326

RÉSUMÉ

Flexible neural electrodes improve the recording longevity and quality of individual neurons by promoting tissue-electrode integration. However, the intracortical implantation of flexible electrodes inevitably induces tissue damage. Understanding the longitudinal neural and vascular recovery following the intracortical implantation is critical for the ever-growing applications of flexible electrodes in both healthy and disordered brains. Aged animals are of particular interest because they play a key role in modeling neurological disorders, but their tissue-electrode interface remains mostly unstudied. Here we integrate in-vivo two-photon imaging and electrophysiological recording to determine the time-dependent neural and vascular dynamics after the implantation of ultraflexible neural electrodes in aged mice. We find heightened angiogenesis and vascular remodeling in the first two weeks after implantation, which coincides with the rapid increase in local field potentials and unit activities detected by electrophysiological recordings. Vascular remodeling in shallow cortical layers preceded that in deeper layers, which often lasted longer than the recovery of neural signals. By six weeks post-implantation vascular abnormalities had subsided, resulting in normal vasculature and microcirculation. Putative cell classification based on firing pattern and waveform shows similar recovery time courses in fast-spiking interneurons and pyramidal neurons. These results elucidate how structural damages and remodeling near implants affecting recording efficacy, and support the application of ultraflexible electrodes in aged animals at minimal perturbations to endogenous neurophysiology.


Sujet(s)
Neurones , Remodelage vasculaire , Animaux , Souris , Électrodes , Encéphale , Interneurones
12.
Cell Death Discov ; 8(1): 283, 2022 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-35688823

RÉSUMÉ

Glioma is considered to be the most common brain malignancy in the central nervous system. At present, the aetiology of glioma is not clear. Due to its rapidly growth and easily recurrence, the prognosis of patients with glioma is very poor. N6-methyladenosine (m6A) methylation is an internal reversible modification in most RNAs, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). Recent studies have shown that the m6A regulators are abnormal expressed, and are extensively involved in the progression of glioma by targeting ncRNAs. Moreover, as the most important epigenetic regulators, ncRNAs can also affect the function of m6A regulators in glioma. This review summarized the expression and function of certain common m6A regulators in glioma. Also, the current review sum up the mutual interactions between m6A regulators and ncRNAs in glioma.

13.
Neurophotonics ; 9(3): 032204, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35036472

RÉSUMÉ

Significance: Electrophysiological recording and optical imaging are two prevalent neurotechnologies with complementary strengths, the combined application of which can significantly improve our capacity in deciphering neural circuits. Flexible electrode arrays can support longitudinal optical imaging in the same brain region, but their mechanical flexibility makes surgical preparation challenging. Here, we provide a step-by-step protocol by which an ultraflexible nanoelectronic thread is co-implanted with a cranial window in a single surgery to enable chronic, dual-modal measurements. Aim: The method uses 1 - µ m -thick polymer neural electrodes which conform to the site of implantation. The mechanical flexibility of the probe allows bending without breaking and enables long-lasting electrophysiological recordings of single-unit activities and concurrent, high-resolution optical imaging through the cranial window. Approach: The protocol describes methods and procedures to co-implant an ultraflexible electrode array and a glass cranial window in the mouse neocortex. The implantation strategy includes temporary attachment of flexible electrodes to a retractable tungsten-microwire insertion shuttle, craniotomy, stereotaxic insertion of the electrode array, skull fixation of the cranial window and electrode, and installation of a head plate. Results: The resultant implant allows simultaneous interrogation of brain activity both electrophysiologically and optically for several months. Importantly, a variety of optical imaging modalities, including wide-field fluorescent imaging, two-photon microscopy, and functional optical imaging, can be readily applied to the specific brain region where ultraflexible electrodes record from. Conclusions: The protocol describes a method for co-implantation of ultraflexible neural electrodes and a cranial window for chronic, multimodal measurements of brain activity in mice. Device preparation and surgical implantation are described in detail to guide the adaptation of these methods for other flexible neural implants and cranial windows.

14.
J Neurosci Methods ; 366: 109434, 2022 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-34863840

RÉSUMÉ

BACKGROUND: Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physiology. The majority of work examining the impact of anesthesia on cerebral blood flow (CBF) has been restricted to before and after measurements with limited spatial resolution. NEW METHOD: We used multi-exposure speckle imaging (MESI), an advanced form of laser speckle contrast imaging (LSCI), to characterize the dynamics of isoflurane anesthesia induction on cerebral vasculature and blood flow in the mouse brain. RESULTS: The large anatomical changes caused by isoflurane are depicted with wide-field imagery and video highlighting the induction of general anesthesia. Within minutes of exposure, both vessel diameter and blood flow increased drastically compared to the awake state and remained elevated for the duration of imaging. An examination of the dynamics of anesthesia induction reveals that blood flow increased faster in arteries than in veins or parenchyma regions. COMPARISON WITH EXISTING METHODS: MESI offers robust hemodynamic measurements across large fields-of-view and high temporal resolutions sufficient for continuous visualization of cerebrovascular events featuring major changes in blood flow. CONCLUSION: The large alterations caused by isoflurane anesthesia to the cortical vasculature and CBF are readily characterized using MESI. These changes are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.


Sujet(s)
Isoflurane , Animaux , Circulation cérébrovasculaire/physiologie , Hémodynamique , Isoflurane/pharmacologie , Souris , Vasodilatation , Vigilance
15.
J Neurooncol ; 156(1): 123-137, 2022 Jan.
Article de Anglais | MEDLINE | ID: mdl-34797524

RÉSUMÉ

PURPOSE: Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival. METHOD: For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins. RESULTS: MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor. CONCLUSION: Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.


Sujet(s)
Autophagie , Tumeurs du cerveau , Carcinogenèse , Glioblastome , Inhibiteurs de protéines kinases , Autophagie/effets des médicaments et des substances chimiques , Tumeurs du cerveau/traitement médicamenteux , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Carcinogenèse/effets des médicaments et des substances chimiques , Glioblastome/traitement médicamenteux , Glioblastome/génétique , Glioblastome/anatomopathologie , Humains , Système de signalisation des MAP kinases/génétique , Inhibiteurs de protéines kinases/pharmacologie , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme
16.
Biomaterials ; 275: 120924, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-34147716

RÉSUMÉ

One in 190 Americans is currently living with the loss of a limb resulted from injury, amputation, or neurodegenerative disease. Advanced neuroprosthetic devices combine peripheral neural interfaces with sophisticated prosthetics and hold great potential for the rehabilitation of impaired motor and sensory functions. While robotic prosthetics have advanced very rapidly, peripheral neural interfaces have long been limited by the capability of interfacing with the peripheral nervous system. In this work, we developed a hyperflexible regenerative sieve electrode to serve as a peripheral neural interface. We examined tissue neurovascular integration through this novel device. We demonstrated that we could enhance the neurovascular invasion through the device with directional growth factor delivery. Furthermore, we demonstrated that we could reduce the tissue reaction to the device often seen in peripheral neural interfaces. Finally, we show that we can create a stable tissue device interface in a long-term implantation that does not impede the normal regenerative processes of the nerve. Our study developed an optimal platform for the continued development of hyperflexible sieve electrode peripheral neural interfaces.


Sujet(s)
Membres artificiels , Maladies neurodégénératives , Électrodes implantées , Humains , Régénération nerveuse , Nerfs périphériques
17.
Exp Ther Med ; 21(4): 367, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33732340

RÉSUMÉ

Retinoblastoma (RB) is the most common primary intraocular cancer type that occurs during retinal development in childhood. Previous studies have reported that long non-coding RNAs (lncRNAs) are involved in the development of RB. Therefore, the aim of the present study was to investigate the effects and underlying regulatory mechanisms of nuclear paraspeckle assembly transcript 1 (NEAT1) in RB. The expression levels of NEAT1, microRNA (miR)-24-3p and leucine-rich-α-2-glycoprotein (LRG1) were detected using reverse transcription-quantitative PCR (RT-qPCR). Moreover, the protein expression levels of LRG1, matrix metalloproteinase 9, N-cadherin and E-cadherin were detected via western blotting. Furthermore, cell migration and invasion abilities were evaluated via Transwell assays. The targeting relationships between miR-24-3p and NEAT1 or LRG1 were predicted using online software and confirmed via dual-luciferase reporter assay. In the present study, NEAT1 and LRG1 were upregulated, and miR-24-3p was downregulated in RB tissues and cells compared with the corresponding healthy tissues and cells. Moreover, miR-24-3p was identified as a target of NEAT and LRG1 was demonstrated to be a direct target gene of miR-24-3p. Knockdown of NEAT1 or LRG1 significantly suppressed RB cell migration and invasion ability, while the effects were reversed by an miR-24-3p inhibitor. In addition, the downregulation of LRG1 caused by miR-24-3p was restored following the overexpression of NEAT1 in RB cells. It was also demonstrated that NEAT1 knockdown inhibited the epithelial-to-mesenchymal transition (EMT) pathway by inhibiting the expression of LRG via targeting miR-24-3p. In conclusion, the present results suggest that silencing of NEAT1 suppresses cell migration, invasion and the EMT process by downregulating LRG1 expression via sponging miR-24-3p in RB, thus indicating that NEAT1 may be a potential candidate for RB treatment.

18.
Cancer Manag Res ; 13: 1967-1979, 2021.
Article de Anglais | MEDLINE | ID: mdl-33664589

RÉSUMÉ

INTRODUCTION: Non-coding RNAs, including long non-coding (lnc)RNAs and microRNAs (miRs), play crucial roles in numerous malignant tumors, including non-small cell lung cancer (NSCLC). METHODS: The expression levels of chromatin-associated RNA Intergenic 10 (CAR10), gap junction protein beta 2 (GJB2) and miR-892a in NSCLC were evaluated by reanalyzing three Gene Expression Omnibus (GEO) datasets, and performing reverse transcription-quantitative PCR, immunohistochemistry staining and Western blot analysis, accordingly. Functionally, Transwell and Matrigel assays were performed to measure changes in the migration and invasion abilities of the A549 and H1299 cell lines. The targeted binding effects between CAR10 and miR-892a, as well as between miR-892a and GJB2 were confirmed by conducting dual-luciferase reporter and RNA pull-down assays, respectively. RESULTS: The present study demonstrated that CAR10 was upregulated in patients with NSCLC, which was also associated with a poor prognosis. Functionally, CAR10 was confirmed to be oncogenic and promoted NSCLC cell migration and invasion, using overexpression and knockdown Transwell assays. Furthermore, GJB2 expression was revealed to be upregulated and was positively correlated with CAR10 expression in NSCLC. A further mechanistic study revealed that GJB2 was a downstream target of CAR10, which induced the migration and invasive potential of the A549 and H1299 cell lines. More specifically, miR-892a was found to serve as a bridge between CAR10 and GJB2, via similar miRNA response elements. The RNA pull-down and luciferase assays indicated that miR-892a directly binds both CAR10 and GJB2. CONCLUSION: CAR10 promoted NSCLC cell migration and invasion by upregulating GJB2 and sponging miR-892a. These findings illustrated that the CAR10/miR-892a/GJB2 axis may be a novel molecular target for the treatment of NSCLC.

19.
Neuron ; 108(2): 302-321, 2020 10 28.
Article de Anglais | MEDLINE | ID: mdl-33120025

RÉSUMÉ

Electrical neural interfaces serve as direct communication pathways that connect the nervous system with the external world. Technological advances in this domain are providing increasingly more powerful tools to study, restore, and augment neural functions. Yet, the complexities of the nervous system give rise to substantial challenges in the design, fabrication, and system-level integration of these functional devices. In this review, we present snapshots of the latest progresses in electrical neural interfaces, with an emphasis on advances that expand the spatiotemporal resolution and extent of mapping and manipulating brain circuits. We include discussions of large-scale, long-lasting neural recording; wireless, miniaturized implants; signal transmission, amplification, and processing; as well as the integration of interfaces with optical modalities. We outline the background and rationale of these developments and share insights into the future directions and new opportunities they enable.


Sujet(s)
Interfaces cerveau-ordinateur , Encéphale/physiologie , Stimulation électrique/instrumentation , Neurones/physiologie , Neurosciences/instrumentation , Animaux , Stimulation électrique/méthodes , Électrodes implantées , Humains , Neurosciences/méthodes , Télémétrie
20.
Onco Targets Ther ; 13: 6051-6062, 2020.
Article de Anglais | MEDLINE | ID: mdl-32821115

RÉSUMÉ

INTRODUCTION: Accumulating evidence has demonstrated that circular RNAs (circRNAs) play a key role in the tumorigenesis of various types of cancers, including clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of circRNA homeodomain interacting protein kinase 3 (circHIPK3) and microRNAs (miRNAs), including miR-508-3p. The clinical measurement of circHIPK3 was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic analysis. Cell Counting Kit-8 and Transwell chamber assays were performed to determine the changes in the proliferative and metastatic ability of A498 and 786-O cells. C-X-C motif chemokine ligand 13 (CXCL13) protein expression was detected by Western blot analysis. The targeted binding effect between miR-508-3p and circHIPK3 or CXCL13 was confirmed by constructed luciferase and RNA immunoprecipitation (RIP) assays, respectively. Fluorescence in situ hybridization (FISH) assay was used to measure the subcellular localization of circHIPK3 and miR-508-3p. RESULTS: It was found that circHIPK3 was markedly upregulated in ccRCC tissue and cell lines, and circHIPK3-upregulation was closely correlated with poor clinicopathological features in patients with ccRCC. It was found that both miR-508-3p and circHIPK3 were localized in the cytoplasm of ccRCC cells. The up- and downregulation of circHIPK3 positively regulated ccRCC cell proliferation and metastasis, and this regulatory effect was reversed by miR-508-3p. Through luciferase and RIP assays, it was confirmed that circHIPK3 could interacted with miR-508-3p. Furthermore, it was revealed that CXCL13, which was negatively correlated with miR-508-3p, was upregulated in ccRCC. It was also shown that CXCL13 was a downstream target of miR-508-3p. miR-508-3p suppressed ccRCC cell proliferation and metastasis by targeting CXCL13. Lastly, it was demonstrated that circHIPK3 promoted CXCL13 to facilitate ccRCC cell proliferation and metastasis by decoying miR-508-3p. CONCLUSION: In brief, the results of the present study showed that circHIPK3 promoted ccRCC cell proliferation and metastasis by altering miR-5083p/CXCL13 signaling. The present findings might provide a novel target for the molecular treatment of ccRCC.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...