Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 10(1): 2146, 2020 02 07.
Article de Anglais | MEDLINE | ID: mdl-32034222

RÉSUMÉ

While the introduction of herbicide tolerant crops provided growers new options to manage weeds, the widespread adoption of these herbicides increased the risk for herbicide spray drift to surrounding vegetation. The impact of herbicide drift in sensitive crops is extensively investigated, whereas scarce information is available on the consequences of herbicide drift in non-target plants. Weeds are often abundant in field margins and ditches surrounding agricultural landscapes. Repeated herbicide drift exposure to weeds could be detrimental to long-term management as numerous weeds evolved herbicide resistance following recurrent-selection with low herbicide rates. The objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba spray drift could select Amaranthus spp. biotypes with reduced herbicide sensitivity. Palmer amaranth and waterhemp populations were recurrently exposed to herbicide drift in a wind tunnel study over two generations. Seeds from survival plants were used for the subsequent rounds of herbicide drift exposure. Progenies were subjected to herbicide dose-response studies following drift selection. Herbicide drift exposure rapidly selected for Amaranthus spp. biotypes with reduced herbicide sensitivity over two generations. Weed management programs should consider strategies to mitigate near-field spray drift and suppress the establishment of resistance-prone weeds on field borders and ditches in agricultural landscapes.


Sujet(s)
Amaranthus/effets des médicaments et des substances chimiques , Écotype , Résistance aux herbicides , Acide 2,4-dichlorophénoxy-acétique/toxicité , Amaranthus/génétique , Amaranthus/physiologie , Dicamba/toxicité , Glycine/analogues et dérivés , Glycine/toxicité , Herbicides/toxicité ,
2.
PLoS One ; 14(7): e0220014, 2019.
Article de Anglais | MEDLINE | ID: mdl-31318947

RÉSUMÉ

The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.


Sujet(s)
Amaranthus/effets des médicaments et des substances chimiques , Résistance aux herbicides , Herbicides/pharmacologie , Relation dose-effet des médicaments , Glycine/administration et posologie , Glycine/analogues et dérivés , Glycine/composition chimique , Glycine/pharmacologie , Herbicides/administration et posologie , Herbicides/composition chimique ,
3.
Pest Manag Sci ; 75(7): 1875-1886, 2019 Jul.
Article de Anglais | MEDLINE | ID: mdl-30672112

RÉSUMÉ

BACKGROUND: The increasing popularity of pulse-width modulation (PWM) sprayers requires that application interaction effects on spray pattern uniformity be completely understood to maintain a uniform overlap of spray, thereby reducing crop injury potential and maximizing coverage on target pests. The objective of this research was to determine the impacts of nozzle type (venturi vs. non-venturi), boom pressure, and PWM duty cycle on spray pattern uniformity. Research was conducted using an indoor spray patternator located at the University of Nebraska-Lincoln in Lincoln, NE, USA. Coefficient of variation (CV), root mean square error (RMSE), and average percent error (APE) were used to characterize spray pattern uniformity. RESULTS: Generally, across nozzles and pressures, the duty cycle minimally impacted the CV of spray patterns. However, across nozzles and duty cycles, increasing pressure decreased CV values, resulting in more uniform spray patterns. The RMSE values typically increased as pressure and duty cycle increased across nozzles. This may be the result of a correlation between RMSE values and flow rate as RMSE values also increased as nozzle orifice size increased. Generally, APE increased as the duty cycle decreased across nozzles and pressures with significant increases (40%) caused by the 20% duty cycle. Within non-venturi nozzles, increasing pressure reduced APE across duty cycles, while venturi nozzles followed no such trend. CONCLUSION: Overall, results suggest PWM duty cycles at or above 40% minimally impact spray pattern uniformity. Further, increased application pressures and the use of non-venturi nozzles on PWM sprayers increase the precision and uniformity of spray applications. © 2019 Society of Chemical Industry.


Sujet(s)
Protection des cultures/instrumentation , Conception d'appareillage , Pesticides
4.
Sensors (Basel) ; 15(12): 31965-72, 2015 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-26694417

RÉSUMÉ

An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 µL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.


Sujet(s)
Agriculture/instrumentation , Agriculture/méthodes , Surveillance de l'environnement/instrumentation , Pesticides/analyse , Technologie sans fil/instrumentation , Conception d'appareillage , Pesticides/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...