Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 897
Filtrer
1.
J Am Soc Nephrol ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39018120

RÉSUMÉ

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized children. Pediatric AKI receiving acute kidney replacement therapy (KRT) is associated with long-term chronic kidney disease (CKD), hypertension, and death. We aim to determine the outcomes after AKI in children who did not receive acute KRT, since these remain uncertain. METHODS: Retrospective cohort study of all hospitalized children (0-18 years) surviving AKI without acute KRT between 1996-2020 in Ontario, Canada, identified by validated diagnostic codes in provincial administrative health databases. Children with prior KRT, CKD, or AKI were excluded. Cases were matched with up to four hospitalized comparators without AKI by age, neonatal status, sex, intensive care unit admission, cardiac surgery, malignancy, hypertension, hospitalization era, and a propensity score for AKI. Patients were followed until death, provincial emigration, or censoring in March 2021. The primary outcome was long-term major adverse kidney events (MAKE-LT; a composite of all-cause mortality, long-term KRT, or incident CKD). RESULTS: We matched 4,173 pediatric AKI survivors with 16,337 hospitalized comparators. Baseline covariates were well-balanced following propensity score matching. During median 9.7-year follow-up, 18% of AKI survivors developed MAKE-LT vs. 5% of hospitalized comparators (hazard ratio [HR] 4.0, 95% confidence interval [CI] 3.6-4.4). AKI survivors had higher rates of long-term KRT (2% vs. <1%; HR 11.7, 95%CI 7.5-18.4), incident CKD (16% vs. 2%; HR 7.9, 95%CI 6.9-9.1), incident hypertension (17% vs. 8%; HR 2.3, 95%CI 2.1-2.6), and AKI during subsequent hospitalization (6% vs. 2%; HR 3.7, 95%CI 3.1-4.5), but no difference in all-cause mortality (3% vs. 3%; HR 0.9, 95%CI 0.7-1.1). CONCLUSIONS: Children surviving AKI without acute KRT were at higher long-term risk of CKD, long-term KRT, hypertension, and subsequent AKI vs. hospitalized comparators.

2.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38970019

RÉSUMÉ

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Sujet(s)
Avena , Sécheresses , Homéostasie , Phylogenèse , Protéines végétales , Espèces réactives de l'oxygène , Facteurs de transcription , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Espèces réactives de l'oxygène/métabolisme , Avena/génétique , Avena/métabolisme , Régulation de l'expression des gènes végétaux , Polyéthylène glycols/pharmacologie , Famille multigénique , Stress physiologique/génétique , Étude d'association pangénomique , Génome végétal
3.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38992897

RÉSUMÉ

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Sujet(s)
Émulsifiants , Émulsions , Gels , Taille de particule , Rhéologie , Protéines de soja , Protéines de soja/composition chimique , Émulsions/composition chimique , Émulsifiants/composition chimique , Gels/composition chimique , Huiles végétales/composition chimique , Huile de palme/composition chimique , Huile de colza/composition chimique , Huile de noix de coco/composition chimique , Dureté , Caséines/composition chimique , Matières grasses alimentaires
5.
Am J Cancer Res ; 14(6): 2823-2838, 2024.
Article de Anglais | MEDLINE | ID: mdl-39005693

RÉSUMÉ

Tissue transglutaminase (TGM2) is a member of the glutamine transferase superfamily, located within cells and their membranes. When secreted, it catalyzes the cross-linking of extracellular matrix proteins and promotes the formation of extracellular matrix scaffolds. To determine the function of TGM2 in the tumorigenesis of lung squamous cell carcinoma (LUSC), we conducted a comprehensive bioinformatics analysis of TGM2. Our findings indicate that high expression of TGM2 in LUSC was associated with a poorer prognosis. Additionally, we found that high expression of TGM2 is closely related to tumor-promoting inflammation and may increase sensitivity to immunotherapy. We further confirmed the cancer-promoting effect of TGM2 in LUSC through in vitro overexpression and knockdown experiments and showed that TGM2 primarily affects cancer cell proliferation, apoptosis, and invasion. In summary, TGM2 promoted the progression of LUSC, and targeting TGM2 is expected to become a new therapeutic approach for LUSC treatment.

6.
Plants (Basel) ; 13(13)2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38999562

RÉSUMÉ

Fusarium head blight (FHB) is a major threat to global wheat production. Recent reviews of wheat FHB focused on pathology or comprehensive prevention and lacked a summary of advanced detection techniques. Unlike traditional detection and management methods, wheat FHB detection based on various imaging technologies has the obvious advantages of a high degree of automation and efficiency. With the rapid development of computer vision and deep learning technology, the number of related research has grown explosively in recent years. This review begins with an overview of wheat FHB epidemic mechanisms and changes in the characteristics of infected wheat. On this basis, the imaging scales are divided into microscopic, medium, submacroscopic, and macroscopic scales. Then, we outline the recent relevant articles, algorithms, and methodologies about wheat FHB from disease detection to qualitative analysis and summarize the potential difficulties in the practicalization of the corresponding technology. This paper could provide researchers with more targeted technical support and breakthrough directions. Additionally, this paper provides an overview of the ideal application mode of the FHB detection technologies based on multi-scale imaging and then examines the development trend of the all-scale detection system, which paved the way for the fusion of non-destructive detection technologies of wheat FHB based on multi-scale imaging.

7.
Article de Anglais | MEDLINE | ID: mdl-38847172

RÉSUMÉ

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive neoplasm that usually originates from liver cells and is one of the most common malignancies worldwide. To improve the survival rate of HCC patients, specific prognostic markers are essential to guide HCC therapy. CEP55 is a microtubule-bundling protein involved in critical cell functions, including cell growth, transformation, and cytokinesis. AIMS: This study examined gene alterations in HCC tumor tissues through comprehensive analysis, aiming to elucidate their contribution to disease development. METHODS: Bioinformatics tools were employed to investigate the expression, genetic variations, prognostic significance, and clinicopathological relevance of CEP55 across GEO and TCGA datasets. We further explored gene alterations, DNA methylation levels, and immune infiltration of CEP55. To elucidate the potential molecular mechanisms involved, GO and KEGG analysis was performed. Finally, RT-qPCR was also performed on a number of normal and tumoral cell lines in vitro, which demonstrated that the expression of the CEP55 was significantly higher in the tumor cell lines. RESULTS: We observed that CEP55 was upregulated in 16 cancers compared to corresponding normal tissues. CEP55 was found to be related to T stages, pathologic stages, histologic grade, and levels of AFP. K-M analysis demonstrated that CEP55 expression was associated with a worse outcome. ROC curve analysis showed that CEP55 expression accurately distinguished HCC from normal tissue (AUC = 0.954). The area under 1-,3- and 5-year survival ROCs were above 0.6. The HSPA4 genetic alterations in HCC were 0.8%. Among the 15 DNA methylation CpG sites, 6 were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints in HCC. The KEGG pathway analysis indicated that CEP55 was associated with the cell cycle and presented together with CDK1. HCC cell lines were demonstrated to express high levels of CEP55 compared to normal cells. CONCLUSION: As a result of bioinformatic analyses and RT-qPCR validation in HCC, CEP55 increased in HCC tissues and was associated with the stage of the disease and survival rate.

8.
BMC Oral Health ; 24(1): 657, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38840138

RÉSUMÉ

BACKGROUND: Margin designs and loading conditions can impact the mechanical characteristics and survival of endocrowns. Analyzing the stress distribution of endocrowns with various margin designs and loading conditions can provide evidence for their clinical application. METHODS: Three finite element analysis models were established based on the margin designs: endocrown with a butt-joint type margin (E0), endocrown with a 90° shoulder (E90), and endocrown with a 135° shoulder (E135). The E0 group involved lowering the occlusal surface and preparing the pulp chamber. The E90 group created a 90° shoulder on the margin of model E0, measuring 1.5 mm high and 1 mm wide. The E135 group featured a 135° shoulder. The solids of the models were in fixed contact with each other, and the materials of tooth tissue and restoration were uniform, continuous, isotropic linear elasticity. Nine static loads were applied, with a total load of 225 N, and the maximum von Mises stresses and stress distribution were calculated for teeth and endocrowns with different margin designs. RESULTS: Compared the stresses of different models under the same loading condition. In endocrowns, when the loading points were concentrated on the buccal side, the maximum von Mises stresses were E0 = E90 = E135, and when there was a lingual loading, they were E0 < E90 = E135. In enamel, the maximum von Mises stresses under all loading conditions were E0 > E90 > E135. In dentin, the maximum von Mises stresses of the three models were basically similar except for load2, load5 and load9. Compare the stresses of the same model under different loading conditions. In endocrowns, stresses were higher when lingual loading was present. In enamel and dentin, stresses were higher when loaded obliquely or unevenly. The stresses in the endocrowns were concentrated in the loading area. In enamel, stress concentration occurred at the cementoenamel junction. In particular, E90 and E135 also experienced stress concentration at the shoulder. In dentin, the stresses were mainly concentrated in the upper section of the tooth root. CONCLUSION: Stress distribution is similar among the three margin designs of endocrowns, but the shoulder-type designs, especially the 135° shoulder, exhibit reduced stress concentration.


Sujet(s)
Analyse du stress dentaire , Analyse des éléments finis , Contrainte mécanique , Humains , Analyse du stress dentaire/méthodes , Conception de prothèse dentaire , Couronnes , Phénomènes biomécaniques , Dentine
9.
Sci Total Environ ; 943: 173835, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38851345

RÉSUMÉ

OBJECTIVE: Chronic exposure to cold temperature is known to elevate blood pressure, leading to a condition known as cold-induced hypertension (CIH). Our previous research suggested correlations between alterations in gut microbiota, decrease in butyrate level, and the onset and progression of CIH. However, the role of butyrate in CIH and the underlying mechanisms need further investigation. METHODS: We exposed Specific Pathogen Free (SPF) rats to continuous cold temperature (4 ± 1 °C) for 6 weeks to establish a CIH rat model. Rats were divided into different groups by dose and duration, and the rats under cold were administered with butyrate (0.5 or 1 g/kg/day) daily. We assessed hypertension-associated phenotypes, pathological morphological changes, and endocrine-related phenotypes of brown adipose tissue (BAT). The effects of butyrate on gut microbiota and intestinal content metabolism were evaluated by 16s RNA sequencing and non-targeted metabolomics, respectively. RESULTS: The systolic blood pressure (SBP) of rats exposed to cold after supplemented with butyrate were significantly lower than that of the Cold group. Butyrate may increase the species, abundance, and diversity of gut microbiota in rats. Specifically, butyrate intervention enriched beneficial bacterial genera, such as Lactobacillaceae, and decreased the levels of harmful bacteria genera, such as Actinobacteriota and Erysipeiotrichaceae. Cold exposure significantly increased BAT cells and the number of mitochondria. After butyrate supplementation, the levels of peroxisome proliferator-activated receptor gamma coactivator 1a and fibroblast growth factor 21 in BAT were significantly elevated (P < 0.05), and the volume and number of lipid droplets increased. The levels of ANG II and high-density lipoprotein were elevated in the Cold group but decreased after butyrate supplementation. CONCLUSION: Butyrate may attenuate blood pressure in CIH by promoting the growth of beneficial bacteria and the secretion of beneficial derived factors produced by BAT, thus alleviating the elevation of blood pressure induced by cold. This study demonstrates the anti-hypertensive effects of butyrate and its potential therapeutic mechanisms, offering novel insights to the prevention and treatment of CIH in populations living or working in cold environments.


Sujet(s)
Tissu adipeux brun , Butyrates , Basse température , Microbiome gastro-intestinal , Hypertension artérielle , Animaux , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Tissu adipeux brun/effets des médicaments et des substances chimiques , Rats , Basse température/effets indésirables , Mâle
10.
Immun Inflamm Dis ; 12(6): e1284, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38896069

RÉSUMÉ

BACKGROUND: Tumor immunotherapy has become an important adjuvant therapy after surgery, radiotherapy, and chemotherapy. In recent years, the role of tumor-associated antigen (TAA) in tumor immunotherapy has become increasingly prominent. Cancer-testis antigen (CTA) is a kind of TAA that is highly restricted in a variety of tumors and can induce an immune response. AIMS: This review article aimed to evaluate the role of CTA on the progression of ovarian cancer, its diagnostic efficacy, and the potential for immunotherapy. METHODS: We analyzed publications and outlined a comprehensive of overview the regulatory mechanism, immunogenicity, clinical expression significance, tumorigenesis, and application prospects of CTA in ovarian cancer, with a particular focus on recent progress in CTA-based immunotherapy. RESULTS: The expression of CTA affects the occurrence, development, and prognosis of ovarian cancer and is closely related to tumor immunity. CONCLUSION: CTA can be used as a biomarker for the diagnosis and prognosis evaluation of ovarian cancer and is an ideal target for antitumor immunotherapy. These findings provide novel insights on CTA in the improvement of diagnosis and treatment for ovarian cancer. The successes, current challenges and future prospects were also discussed to portray its significant potential.


Sujet(s)
Antigènes néoplasiques , Marqueurs biologiques tumoraux , Immunothérapie , Tumeurs de l'ovaire , Humains , Femelle , Tumeurs de l'ovaire/thérapie , Tumeurs de l'ovaire/immunologie , Tumeurs de l'ovaire/diagnostic , Antigènes néoplasiques/immunologie , Immunothérapie/méthodes , Pronostic , Animaux
11.
CNS Neurosci Ther ; 30(6): e14750, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38898731

RÉSUMÉ

BACKGROUND: Tooth loss is closely related to cognitive impairment, especially affecting cognitive functions involving hippocampus. The most well-known function of the hippocampus is learning and memory, and the mechanism behind is neuroplasticity, which strongly depends on the level of brain-derived neurotrophic factor (BDNF). While research has delved into the possible mechanisms behind the loss of teeth leading to cognitive dysfunction, there are few studies on the plasticity of sensory neural pathway after tooth loss, and the changes in related indicators of synaptic plasticity still need to be further explored. METHODS: In this study, the bilateral maxillary molars were extracted in Sprague-Dawley rats of two age ranges (young and middle age) to establish occlusal support loss model; then, the spatial cognition was tested by Morris Water Maze (MWM). Quantitative real-time PCR (qPCR) and Western Blotting (WB) were used to detect BDNF, AKT, and functional proteins (viz., PSD95 and NMDAR) of hippocampal synapses. Golgi staining was used to observe changes in ascending nerve pathway. IF was used to confirm the location of BDNF and AKT expressed in hippocampus. RESULTS: MWM showed that the spatial cognitive level of rats dropped after occlusal support loss. qPCR, WB, and IF suggested that the BDNF/AKT pathway was down-regulated in the hippocampus. Golgi staining showed the neurons of ascending sensory pathway decreased in numbers. CONCLUSION: Occlusal support loss caused plastic changes in ascending nerve pathway and induced cognitive impairment in rats by down-regulating BDNF and synaptic plasticity.


Sujet(s)
Facteur neurotrophique dérivé du cerveau , Dysfonctionnement cognitif , Hippocampe , Plasticité neuronale , Rat Sprague-Dawley , Animaux , Plasticité neuronale/physiologie , Dysfonctionnement cognitif/physiopathologie , Dysfonctionnement cognitif/étiologie , Dysfonctionnement cognitif/métabolisme , Facteur neurotrophique dérivé du cerveau/métabolisme , Rats , Mâle , Hippocampe/métabolisme , Apprentissage du labyrinthe/physiologie , Perte dentaire , Protéines proto-oncogènes c-akt/métabolisme , Homologue-4 de la protéine Disks Large/métabolisme
12.
Nano Lett ; 24(25): 7809-7818, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38874576

RÉSUMÉ

Noncontact sensing technology serves as a pivotal medium for seamless data acquisition and intelligent perception in the era of the Internet of Things (IoT), bringing innovative interactive experiences to wearable human-machine interaction perception networks. However, the pervasive limitations of current noncontact sensing devices posed by harsh environmental conditions hinder the precision and stability of signals. In this study, the triboelectric nanopaper prepared by a phase-directed assembly strategy is presented, which possesses low charge transfer mobility (1618 cm2 V-1 s-1) and exceptional high-temperature stability. Wearable self-powered noncontact sensors constructed from triboelectric nanopaper operate stably under high temperatures (200 °C). Furthermore, a temperature warning system for workers in hazardous environments is demonstrated, capable of nonintrusively identifying harmful thermal stimuli and detecting motion status. This research not only establishes a technological foundation for accurate and stable noncontact sensing under high temperatures but also promotes the sustainable intelligent development of wearable IoT devices under extreme environments.

13.
Fundam Res ; 4(3): 455-462, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38933214

RÉSUMÉ

A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.

14.
Surg Endosc ; 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874610

RÉSUMÉ

BACKGROUND: Many studies have investigated the transfer of skills between laparoscopic and robot-assisted surgery (RAS). These studies have considered time, error, and clinical outcomes in the assessment of skill transfer. However, little is known about the specific operations of the surgeon. Clutch control use is an important skill in RAS. Therefore, the present study aimed to propose a novel objective algorithm based on computer vision that can automatically evaluate a surgeon's clutch use. Additionally, the study aimed to evaluate the correlation between clutch metrics and surgical skill on different surgical robot platforms. METHODS: The robotic surgery training center of Wuhan University trained 30 laparoscopic surgeons as the study group between 2023 and 2024. Laparoscopic surgeons were trained by combining robotic simulator exercises and RAS animal experiments. During the training, video and hand movement data were collected. Hand movements identified by a skin-color model were combined with labeling information to classify clutch use. The metrics were validated on different robotic platforms (dv-Trainer, EDGE MP1000, Toumai™ MT1000, and DaVinci Xi system) and among surgeons with different surgical skill levels. RESULTS: On the robotic simulator, clutch accuracy in the expert group was significantly higher than in the study group for all tasks. No significant differences were observed in the number of clutches between the expert and study groups. In the RAS experiment, the number of clutches decreased significantly for both study and expert groups. The accuracy was maintained at a high level in the expert group but decreased rapidly in the study group. CONCLUSIONS: We proposed a new objective assessment of surgical skills, clutch use metrics, in cross-platform RAS. Additionally, we verified that the metrics significantly correlated with the surgical skill levels of the surgeons.

15.
Heliyon ; 10(10): e31502, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38818203

RÉSUMÉ

This study describes the non-bracket oblique traction-hoisting construction strategy for cable-truss structures, which is to assemble the upper and lower radial cables, hoop cables, sling cables, and compression rods without stress at a low altitude, then hoist the cable-strut system to a high altitude by oblique traction of the upper radial cables through the jack fixed on the upper radial anchorage nodes, and finally actively tension the lower radial cables to achieve the designed shape and prestress level of the entire structure. This strategy assembles at a low altitude, requires simple operations, results in high tensioning efficiency, and does not require brackets, which could guarantee both quality and quantity in terms of completing the construction of cable-truss structures. The semilune-shaped canopy of Yueqing Stadium is constructed using this strategy. The construction simulation and disturbance stability analyses of the structure in the traction-hoisting state and prestress tensioning state are conducted using a nonlinear dynamic finite element method. In the traction-hoisting stage, the deformation changes sharply, and the hoop cables and upper radial cables make up the primary bearing substructure, while the lower radial cables are in a suspended hanging state. In the forming process, the forces of the radial and hoop cables increase gradually, and the structure finally reaches the designed state. For cable-trusses with crossed upper and lower radial cables, the additional stabilizing tooling ropes should be tied at the top of the middle rods to ensure geometric stability because they are susceptible to excessive out-of-plane displacement or even overturning, which is the least desirable at the beginning of traction hoisting.

16.
Talanta ; 277: 126310, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38815319

RÉSUMÉ

The sensitive and accurate detection of target microRNA is especially important for the diagnosis, staging, and treatment of hepatocellular carcinoma (HCC). Herein, we report a simple strand displacement and CRISPR-Cas12a amplification strategy with nanozymes as a signal reporter for the binary visual and colorimetric detection of the HCC related microRNA. Pt@Au nanozymes with excellent peroxidase enzyme activity were prepared and linked to magnetic beads via a single-stranded DNA (ssDNA) linker. The target microRNA was designed to trigger strand displacement amplification and release a DNA promoter to activate the CRISPR-Cas12a system. The activated CRISPR-Cas12a system efficiently cleaved the linker ssDNA and released Pt@Au nanozymes from magnetic beads to induce the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine. The strand displacement amplification converted the single microRNA input into abundant DNA promoter output, which improved the detection sensitivity by over two orders of magnitude. Through integration of strand displacement amplification and the nanozyme-mediated CRISPR-Cas12a system, limits of detection of 0.5 pM and 10 pM for miRNA-21 were achieved with colorimetric and visual readouts, respectively. The proposed strategy can achieve accurate quantitative detection of miRNA-21 in the range from 1 pM to 500 pM. The detection results for miRNA-21 using both colorimetric and visual readouts were validated in 40 clinical serum samples. Significantly, the proposed strategy achieved visual HCC diagnosis with the naked eye and could distinguish distinct Barcelona clinical HCC stages by colorimetric detection, showing good application prospects for sensitive and facile point-of-care testing for HCC.


Sujet(s)
Systèmes CRISPR-Cas , Colorimétrie , Or , microARN , Platine , Colorimétrie/méthodes , Humains , microARN/sang , microARN/génétique , Systèmes CRISPR-Cas/génétique , Or/composition chimique , Platine/composition chimique , Techniques d'amplification d'acides nucléiques/méthodes , Nanoparticules métalliques/composition chimique , Tumeurs du foie/diagnostic , Tumeurs du foie/génétique , Carcinome hépatocellulaire/diagnostic , Carcinome hépatocellulaire/génétique , Benzidines/composition chimique , Limite de détection , ADN simple brin/composition chimique
17.
Opt Lett ; 49(10): 2577-2580, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38748109

RÉSUMÉ

We demonstrate an optical fiber-based, multiple-access frequency transmission using two optical frequency combs. The experimental results using the Allan deviation analysis show that with the phase compensation technique, the frequency instabilities at the remote site are 8.7 × 10-15/1 s and 1.0 × 10-17/103 s, and at the accessing node along the fiber link, the frequency instabilities are 6.9 × 10-15/1 s and 1.1 × 10-17/103 s. Similarly, the power spectral density of phase noise was analyzed in the frequency domain. These experimental results demonstrate that the compensation scheme improved the performance by two to three orders of magnitude. Thus, the proposed frequency transmission technique has potential application for disseminating ultrastable frequency references in the optical fiber network.

18.
Biol Trace Elem Res ; 2024 May 27.
Article de Anglais | MEDLINE | ID: mdl-38801624

RÉSUMÉ

In this study, we explored how cadmium and lead co-exposure affects sleep status among residents of a polluted area and nature reserve in rural northwestern China. Cadmium and lead levels were measured using blood samples, and sleep status was evaluated using sleep questionnaires, with the main sleep indicators including sleep duration, sleep quality, bedtime, and staying up. Furthermore, cadmium-lead co-exposure levels were divided into three groups: high exposure, medium exposure, and low exposure. Subjects in the contaminated area had significantly higher exposure levels (p < 0.001) and more negative sleep indicators (p < 0.01). Significant differences were found for all four sleep indicators in the high exposure group compared to the low exposure group (p < 0.01). Moreover, the overall evaluation of sleep status with high cadmium-lead co-exposure had a negative impact. Our data suggest that cadmium-lead co-exposure has a negative effect on sleep status and may have a synergistic effect on sleep.

19.
Nano Lett ; 24(23): 7125-7133, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38808683

RÉSUMÉ

Wearable sensors are experiencing vibrant growth in the fields of health monitoring systems and human motion detection, with comfort becoming a significant research direction for wearable sensing devices. However, the weak moisture-wicking capability of sensor materials leads to liquid retention, severely restricting the comfort of the wearable sensors. This study employs a pattern-guided alignment strategy to construct microhill arrays, endowing triboelectric materials with directional moisture-wicking capability. Within 2.25 s, triboelectric materials can quickly and directionally remove the droplets, driven by the Laplace pressure differences and the wettability gradient. The directional moisture-wicking triboelectric materials exhibit excellent pressure sensing performance, enabling rapid response/recovery (29.1/37.0 ms), thereby achieving real-time online monitoring of human respiration and movement states. This work addresses the long-standing challenge of insufficient moisture-wicking driving force in flexible electronic sensing materials, holding significant implications for enhancing the comfort and application potential of electronic skin and wearable electronic devices.


Sujet(s)
Pression , Dispositifs électroniques portables , Mouillabilité , Humains , Conception d'appareillage
20.
Materials (Basel) ; 17(9)2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38730922

RÉSUMÉ

Hybrid bonded-bolted composite material interference connections significantly enhance the collaborative load-bearing capabilities of the adhesive layer and bolts, thus improving structural load-carrying capacity and fatigue life. So, these connections offer significant developmental potential and application prospects in aircraft structural assembly. However, interference causes damage to the adhesive layer and composite laminate around the holes, leading to issues with interface damage. In this study, we employed experimental and finite element methods. Initially, different interference-fit sizes were selected for bolt insertion to analyze the damage mechanism of the adhesive layer during interference-fit bolt installation. Subsequently, a finite element tensile model considering damage to the adhesive layer and composite laminate around the holes post-insertion was established. This study aimed to investigate damage in composite bonded-bolted hybrid joints, explore load-carrying rules and failure modes, and reveal the mechanisms of interference effects on structural damage and failure. The research results indicate that the finite element prediction model considering initial damage around the holes is more effective. As the interference-fit size increases, damage to the adhesive layer transitions from surface debonding to local cracking, while damage to the composite matrix shifts from slight compression failure to severe delamination and fiber-bending fracturing. The structural strength shows a trend of initially increasing and then decreasing, with the maximum strength observed at an interference-fit size of 1.1%.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...