Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 429
Filtrer
1.
BMC Cancer ; 24(1): 818, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982347

RÉSUMÉ

BACKGROUND: Glioma is the most common primary brain tumor with high mortality and disability rates. Recent studies have highlighted the significant prognostic consequences of subtyping molecular pathological markers using tumor samples, such as IDH, 1p/19q, and TERT. However, the relative importance of individual markers or marker combinations in affecting patient survival remains unclear. Moreover, the high cost and reliance on postoperative tumor samples hinder the widespread use of these molecular markers in clinical practice, particularly during the preoperative period. We aim to identify the most prominent molecular biomarker combination that affects patient survival and develop a preoperative MRI-based predictive model and clinical scoring system for this combination. METHODS: A cohort dataset of 2,879 patients was compiled for survival risk stratification. In a subset of 238 patients, recursive partitioning analysis (RPA) was applied to create a survival subgroup framework based on molecular markers. We then collected MRI data and applied Visually Accessible Rembrandt Images (VASARI) features to construct predictive models and clinical scoring systems. RESULTS: The RPA delineated four survival groups primarily defined by the status of IDH and TERT mutations. Predictive models incorporating VASARI features and clinical data achieved AUC values of 0.85 for IDH and 0.82 for TERT mutations. Nomogram-based scoring systems were also formulated to facilitate clinical application. CONCLUSIONS: The combination of IDH-TERT mutation status alone can identify the most distinct survival differences in glioma patients. The predictive model based on preoperative MRI features, supported by clinical assessments, offers a reliable method for early molecular mutation prediction and constitutes a valuable scoring tool for clinicians in guiding treatment strategies.


Sujet(s)
Marqueurs biologiques tumoraux , Tumeurs du cerveau , Gliome , Isocitrate dehydrogenases , Imagerie par résonance magnétique , Telomerase , Humains , Gliome/génétique , Gliome/mortalité , Gliome/imagerie diagnostique , Gliome/anatomopathologie , Marqueurs biologiques tumoraux/génétique , Tumeurs du cerveau/génétique , Tumeurs du cerveau/mortalité , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/anatomopathologie , Femelle , Mâle , Imagerie par résonance magnétique/méthodes , Isocitrate dehydrogenases/génétique , Adulte d'âge moyen , Telomerase/génétique , Mutation , Adulte , Nomogrammes , Pronostic , Sujet âgé
2.
Phys Med Biol ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38981592

RÉSUMÉ

OBJECTIVE: Positron Emission Tomography and Magnetic Resonance Imaging (PET-MRI) systems can obtain functional and anatomical scans. But PET suffers from a low signal-to-noise ratio, while MRI are time-consuming. To address time-consuming, an effective strategy involves reducing k-space data collection, albeit at the cost of lowering image quality. This study aims to leverage the inherent complementarity within PET-MRI data to enhance the image quality of PET-MRI. Apporach: A novel PET-MRI joint reconstruction model, termed MC-Diffusion, is proposed in the Bayesian framework. The joint reconstruction problem is transformed into a joint regularization problem, where data fidelity terms of PET and MRI are expressed independently. The regular term, the derivative of the logarithm of the joint probability distribution of PET and MRI, employs a joint score-based diffusion model for learning. The diffusion model involves the forward diffusion process and the reverse diffusion process. The forward diffusion process adds noise to transform a complex joint data distribution into a known joint prior distribution for PET and MRI simultaneously, resembling a denoiser. The reverse diffusion process removes noise using a denoiser to revert the joint prior distribution to the original joint data distribution, effectively utilizing joint probability distribution to describe the correlations of PET and MRI for improved quality of joint reconstruction. MAIN RESULTS: Qualitative and quantitative improvements are observed with the MC-Diffusion model. Comparative analysis against LPLS and Joint ISAT-net on the ADNI dataset demonstrates superior performance by exploiting complementary information between PET and MRI. The MC-Diffusion model effectively enhances the quality of PET and MRI images. SIGNIFICANCE: This study employs the MC-Diffusion model to enhance the quality of PET-MRI images by integrating the fundamental principles of PET and MRI modalities and their inherent complementarity. The MC-Diffusion model facilitates a more profound comprehension of the priors obtained through deep learning.

4.
Anal Chem ; 96(24): 9969-9974, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38847356

RÉSUMÉ

Epinephrine (EP) is an essential catecholamine in the human body. Currently, most EP detection methods are not suitable for in vivo detection due to material limitations. An organic small molecule fluorescent probe based on a chemical cascade reaction for the detection of EP was designed. Anionic heptamethine cyanine dye was selected as a fluorescent dye because of its NIR fluorescence emission with excellent biocompatibility. The secondary amine of EP nucleophilically attacks the carbonate of the probe with its stronger nucleophilicity and further undergoes intramolecular nucleophilic cyclization to release the fluorophore. Other substances containing only primary amines or no ß-OH lack reaction competitiveness due to their weaker nucleophilicity or inability to undergo further cyclization. The fluorescence recovery of the probe was linearly related to the EP concentration of 2-75 µmol/L. The detection limit was 0.4 µmol/L. The recovery rate was 94.78-111.32%. Finally, we successfully achieved bioimaging of EP in living cells and EP analogue in nematodes.


Sujet(s)
Carbocyanines , Épinéphrine , Colorants fluorescents , Colorants fluorescents/composition chimique , Colorants fluorescents/synthèse chimique , Humains , Épinéphrine/analyse , Carbocyanines/composition chimique , Animaux , Imagerie optique , Anions/composition chimique , Anions/analyse , Caenorhabditis elegans , Limite de détection , Rayons infrarouges , Cellules HeLa , Structure moléculaire
5.
Nanotechnology ; 35(36)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38861963

RÉSUMÉ

Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3 × 1010cmHz1/2W-1at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 µs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.

6.
Opt Express ; 32(9): 16351-16361, 2024 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-38859264

RÉSUMÉ

Active control of induced reflection is crucial for many potential applications ranging from slowing light to biosensing devices. However, most previous approaches require patterned nanostructures to achieve controllable induced reflection, which hinders their further applications due to complicated architectures. Herein, we propose a lithography-free multilayered structure to achieve the induced reflection through the coupling of dual-topological-interface-states. The multilayers consist of two one-dimensional (1D) photonic crystals (PCs) and an Ag film separated by a Spacer, topological edge state (TES) and topological Tamm state (TTS) can be excited simultaneously and their coupling induces the reflection window. The coupled-oscillator model is proposed to mimic the coupling between the TES and TTS, and the analytical results are in good agreement with finite element method (FEM). In addition, the TES-TTS induced reflection is robust to the variation of structural parameters. By integrating an ultra-thin phase-change film of Ge2Sb2Te5 (GST) into the multilayers, the induced reflection can be switched through the phase transition of the GST film. The multipole decomposition reveals that the vanished reflection window is arising from the disappearance of TTS associated with the toroidal dipole (TD) mode.

7.
Opt Express ; 32(8): 13978-13985, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38859355

RÉSUMÉ

Optical chirality is highly demanded for biochemical sensing, spectral detection, and advanced imaging, however, conventional design schemes for chiral metamaterials require highly computational cost due to the trial-and-error strategy, and it is crucial to accelerate the design process particularly in comparably simple planar chiral metamaterials. Herein, we construct a bidirectional deep learning (BDL) network consists of spectra predicting network (SPN) and design predicting network (DPN) to accelerate the prediction of spectra and inverse design of chiroptical response of planar chiral metamaterials. It is shown that the proposed BDL network can accelerate the design process and exhibit high prediction accuracy. The average process of prediction only takes ∼15 ms, which is 1 in 40000 compared to finite-difference time-domain (FDTD). The mean-square error (MSE) loss of forward and inverse prediction reaches 0.0085 after 100 epochs. Over 95.2% of training samples have MSE ≤ 0.0042 and MSE ≤ 0.0044 for SPN and DPN, respectively; indicating that the BDL network is robust in the inverse deign without underfitting or overfitting for both SPN and DPN. Our founding shows great potentials in accelerating the on-demand design of planar chiral metamaterials.

8.
Pest Manag Sci ; 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38860678

RÉSUMÉ

BACKGROUND: The complex interaction between plant viruses and their insect vectors is the basis for the epidemiology of plant viruses. The 'Vector Manipulation Hypothesis' (VMH) was proposed to demonstrate the evolution of strategies in plant viruses to enhance their transmission to new hosts through direct effects on insect vector behavior and/or physiology. However, the aphid vectors used in previous studies were mostly obtained by feeding on virus-infected plants and as a result, it was difficult to eliminate the confounding effects of infected host plants. Furthermore, the mechanisms of the direct effects of plant viruses on insect vectors have rarely been examined comprehensively. RESULTS: We fed Sitobion avenae on an artificial diet infused with a purified suspension of Barley yellow dwarf virus (BYDV) PAV strain to obtain viruliferous aphids. We then examined their growth and reproduction performance, resistance to the parasitoid Aphidius gifuensis Ashmead, and feeding behavior. The results indicate that (1) viruliferous aphids had a shorter life span and a lower relative growth rate at the nymphal stage; (2) A. gifuensis had a lower parasitism rate, mummification rate, and emergence rate in viruliferous aphids; (3) Viruliferous aphids spent more time on non-probing and salivation behavior and had a shorter total duration of penetration and ingestion compared with healthy conspecifics. CONCLUSION: These results suggest that plant virus infection may directly alter vector fitness and behavior that improves plant virus transmission, but not vector growth. These findings highlight the mechanisms of VMH and the ecological significance of vector manipulation by plant viruses, and have implications for plant virus disease and vector management. © 2024 Society of Chemical Industry.

9.
Environ Res ; 256: 119273, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38821465

RÉSUMÉ

Insecticide resistance poses a significant challenge in managing generalist herbivores such as the tobacco cutworm (TCW), Spodoptera litura. This study investigates the potential risks associated with using the novel diamide insecticide tetraniliprole to control TCW. A tetraniliprole-resistant strain was developed through twelve generations of laboratory selection, indicating an intermediate risk of resistance development. Field monitoring in China revealed a significant incidence of resistance, particularly in the Nanchang (NC) population (>100-fold). Tetraniliprole showed moderate to high cross-resistance to multiple insecticides and was autosomally inherited with incomplete dominance, controlled by multiple genes, some of which belong to the cytochrome P450 family associated with enhanced detoxification. Life table studies indicated transgenerational hormesis, stimulating TCW female fecundity and increasing population net reproduction rates (R0). These findings suggest a potential for pest resurgence under tetraniliprole use. The integrated risk assessment provides a basis for the sustainable management of TCW using tetraniliprole.


Sujet(s)
Insecticides , Spodoptera , Animaux , Appréciation des risques , Spodoptera/effets des médicaments et des substances chimiques , Insecticides/toxicité , Résistance aux insecticides/génétique , Herbivorie , Chine , Femelle , Larve/effets des médicaments et des substances chimiques
11.
BMC Pregnancy Childbirth ; 24(1): 351, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38720272

RÉSUMÉ

BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.


Sujet(s)
Avortement spontané , Marqueurs biologiques , Transfert d'embryon , microARN , Humains , Femelle , Grossesse , microARN/sang , Adulte , Marqueurs biologiques/sang , Avortement spontané/sang , Implantation embryonnaire , Apprentissage machine
12.
Cureus ; 16(4): e58119, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38738106

RÉSUMÉ

This report presents a clinical case involving the application of a computer-aided design and manufacturing (CAD-CAM) guide to insert miniscrew anchorage at the zygomatic alveolar ridge. A 24-year-old male adult came in with overcrowded teeth and a protruding facial profile, particularly severe overcrowding in the upper teeth and moderate overcrowding in the lower teeth. The orthodontic treatment plan involved extracting four first premolars and adding a mini-implant in the upper jaw to enhance anchorage. A miniscrew was placed in the patient's left zygomatic alveolar ridge using a guide and in the right zygomatic alveolar ridge based on experience. The use of a mini-implant guide improves the accuracy of mini-implant positioning and angulation in the infrazygomatic crest zone, reduces the risk of tooth root damage, and enhances mini-implant stability.

13.
J Cancer ; 15(11): 3394-3405, 2024.
Article de Anglais | MEDLINE | ID: mdl-38817869

RÉSUMÉ

CD52 is an important functional regulator involved in the development of human cancer. In this study, the clinical significance and biological function of CD52 in the malignant behavior of non-small cell lung cancer (NSCLC) were explored. In this study, immunohistochemical (IHC) staining was performed to determine the expression pattern of CD52 in NSCLC. Loss of function assays were used to evaluate the biological functions of CD52 in NSCLC cells in vitro and in vivo. Our data indicated that the expression of CD52 was significantly elevated in NSCLC and correlated with the patient prognosis. Functionally, downregulation of CD52 expression significantly suppressed the proliferation, migration, aerobic glycolysis and tumorigenesis of NSCLC cells. Moreover, CD52 regulated aerobic glycolysis of NSCLC cells through the AKT pathway. Furthermore, aerobic glycolysis induced by 2-DG inhibited the proliferation of NSCLC cells. In conclusion, CD52 knockdown inhibited aerobic glycolysis and malignant behavior of NSCLC cells through AKT signaling pathway, which may be employed in an alternative therapeutic target for NSCLC.

14.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38630847

RÉSUMÉ

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Sujet(s)
Apprentissage profond , Tumeurs de l'oesophage , Carcinome épidermoïde de l'oesophage , États précancéreux , Humains , Adulte d'âge moyen , Tumeurs de l'oesophage/diagnostic , Tumeurs de l'oesophage/épidémiologie , Tumeurs de l'oesophage/anatomopathologie , Carcinome épidermoïde de l'oesophage/anatomopathologie , Études prospectives , États précancéreux/anatomopathologie
15.
J Hazard Mater ; 470: 134196, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38603907

RÉSUMÉ

The secondary outbreak of cyanobacteria after algicide treatment has been a serious problem to water ecosystems. Hydrogen peroxide (H2O2) is an algaecide widely used in practice, but similar re-bloom problems are inevitably encountered. Our work found that Microcystis aeruginosa (M. aeruginosa) temporarily hibernates after H2O2 treatment, but there is still a risk of secondary outbreaks. Interestingly, the dormant period was as long as 20 and 28 days in 5 mg L-1 and 20 mg L-1 H2O2 treatment groups, respectively, but the photosynthetic activity was both restored much earlier (within 14 days). Subsequently, a quantitative imaging flow cytometry-based method was constructed and confirmed that the re-bloom had undergone two stages including first recovery and then re-division. The expression of ftsZ and fabZ genes showed that M. aeruginosa had active transcription processes related to cell division protein and fatty acid synthesis during the dormancy stat. Furthermore, metabolomics suggested that the recovery of M. aeruginosa was mainly by activating folate and salicylic acid synthesis pathways, which promoted environmental stress resistance, DNA synthesis, and cell membrane repair. This study reported the comprehensive mechanisms of secondary outbreak of M. aeruginosa after H2O2 treatment. The findings suggest that optimizing the dosage and frequency of H2O2, as well as exploring the potential use of salicylic acid and folic acid inhibitors, could be promising directions for future algal control strategies.


Sujet(s)
Peroxyde d'hydrogène , Microcystis , Microcystis/effets des médicaments et des substances chimiques , Photosynthèse/effets des médicaments et des substances chimiques , Acide folique , Acide salicylique/pharmacologie , Protéines bactériennes/génétique
16.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38685219

RÉSUMÉ

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Sujet(s)
Cytochrome P-450 enzyme system , Hemiptera , Protéines d'insecte , Résistance aux insecticides , Insecticides , Ivermectine/analogues et dérivés , Pyrazoles , Pyridazines , ortho-Aminobenzoates , Animaux , Hemiptera/effets des médicaments et des substances chimiques , Hemiptera/génétique , Insecticides/pharmacologie , Cytochrome P-450 enzyme system/génétique , Cytochrome P-450 enzyme system/métabolisme , Pyridazines/pharmacologie , Résistance aux insecticides/génétique , Protéines d'insecte/génétique , Protéines d'insecte/métabolisme , Protéines d'insecte/composition chimique , Pyrazoles/pharmacologie , Phylogenèse , Néonicotinoïdes/pharmacologie , Techniques de knock-down de gènes , Simulation de docking moléculaire , Séquence d'acides aminés , Ivermectine/pharmacologie , Ivermectine/toxicité
17.
Sci Technol Adv Mater ; 25(1): 2315015, 2024.
Article de Anglais | MEDLINE | ID: mdl-38455384

RÉSUMÉ

We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.


The study presents a unique investigation of [Pt/CoFeB/Ru]10 multilayers, revealing suppressed skyrmion phases, intricate magnetic domain structures, and Néel-type domain walls, providing crucial insights for spintronic applications.

18.
Appl Opt ; 63(4): 927-939, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38437389

RÉSUMÉ

Phase measuring profilometry (PMP) has been widely used in industries for three-dimensional (3D) shape measurement. However, phase information is often lost due to image saturation results from high-reflection object surfaces, leading to subsequent 3D reconstruction errors. To address the problem, we propose an adaptive phase retrieval algorithm that can accurately fit the sinusoidal fringes damaged by high reflection in the saturated regions to retrieve the lost phase information. Under the proposal, saturated regions are first identified through a minimum error thresholding technique to narrow down regions of interest and so that computation costs are reduced. Then, images with differing exposures are fused to locate peak-valley coordinates of the fitting sinusoidal fringes. And the corresponding values of peak-valley pixels are obtained based on a least squares method. Finally, an adaptive piecewise sine function is constructed to recover the sinusoidal fringe pattern by fitting the pattern intensity distribution. And the existing PMP technology is used to obtain phase information from the retrieved sinusoidal fringes. To apply the developed method, only one (or two) image with different exposure times is needed. Compared with existing methods for measuring reflective objects, the proposed method has the advantages of short operation time, reduced system complexity, and low demand on hardware equipment. The effectiveness of the proposed method is verified through two experiments. The developed methodology provides industry an alternative way to measure high-reflection objects in a wide range of applications.

19.
Cell Biosci ; 14(1): 35, 2024 Mar 17.
Article de Anglais | MEDLINE | ID: mdl-38494478

RÉSUMÉ

BACKGROUND: Ubiquitination is a critical post-translational modification which can be reversed with an enzyme family known as deubiquitinating enzymes (DUBs). It has been reported that dysregulation of deubiquitination leads to carcinogenesis. As a member of the DUBs family, proteasome 26 S subunit non-ATPase 7 (PSMD7) serves as an underlying tumour-promoting factor in multiple cancers. However, the clinical significance and biological functions of PSMD7 in pancreatic cancer (PC) remain unclear. RESULTS: In this study, we first reported frequent overexpression of PSMD7 in PC tissues, and high levels of PSMD7 were markedly linked to shorter survival and a malignant phenotype in PC patients. An array of in vitro and in vivo gain/loss-of-function tests revealed that PSMD7 facilitates the progression of PC cells. Additionally, we found that PSMD7 promotes PC cell progression by activating the Notch homolog 1 (Notch1) signalling. Interestingly, in PC cells, the inhibitory effect of PSMD7 knockdown on cellular processes was comparable to that observed upon Notch1 knockdown. Mechanistically, PSMD7 deubiquitinated and stabilised sex determining region Y (SRY)-box 2 (SOX2), a key mediator of Notch1 signalling. The stabilisation of SOX2, mediated by PSMD7, dramatically increased SOX2 protein levels, subsequently activating the Notch1 pathway. Finally, restoration of SOX2 expression abrogated the PSMD7-silenced antitumour effect. CONCLUSIONS: Taken together, our work identifies and validates PSMD7 as a promoter of PC progression through augmentation of the Notch1 signalling pathway mediated by SOX2. This finding suggests that PSMD7 holds promise as a potential therapeutic target for the management of this refractory disease.

20.
Chin Med ; 19(1): 53, 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38519940

RÉSUMÉ

BACKGROUND: Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS: With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS: Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1ß), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-ß1 (TGF-ß1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION: IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE