Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Food Chem ; 459: 140380, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39003862

RÉSUMÉ

As a common heavy metal contaminant, Cd2+ has adverse effects on food safety and consumer health. It is very important for human health to realize highly sensitive Cd2+ detection methods. The self-powered sensing system based on enzyme biofuel cells (EBFCs) does not need an external power supply, which can simplify the experimental equipment and has great application value in portable detection. Thus, the biosensor is innovatively integrated into the screen-printed electrode to construct a new type of portable sensor suitable for on-site and real-time Cd2+ detection. Hybridization chain reaction (HCR) combined with the Cd2+-dependent deoxyribose (DNAzyme) signal amplification strategy is used to enhance the detection sensitivity while specifically recognizing the Cd2+. Moreover, the self-powered sensor combines with smartphones to realize quantitative Cd2+ detection without other instruments and has the characteristic of Effectively improving the hazard detection technology is essential to ensure food safety. Portability, simplicity, and speed are suitable for real-time Cd2+ detection in the field. The dual mechanism and three quantitative modes combining colorimetric and two electrical signals output modes are adopted to realize the visualization and accurate detection. A series of research results confirm that this strategy is of great significance to strengthen the development of intelligent Cd2+ technology, expand the application of self-powered sensing technology, and improve the safety detection system.

2.
Nanoscale ; 16(2): 657-663, 2024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38093620

RÉSUMÉ

Heterostructured materials have great potential as cathodes for zinc-ion batteries (ZIBs) because of their fast Zn2+ transport channels. Herein, hollow MoS2@C@Cu2S heterostructures are innovatively constructed using a template-engaged method. The carbon layer improves the electrical conductivity, provides a high in situ growth area, and effectively restricts volume expansion during the recycling process. MoS2 nanosheets are grown on the surfaces of hollow C@Cu2S nanocubes using the in situ template method, further expanding the specific surface area and exposing more active sites to enhance the electrical conductivity. As expected, an admirable reversible capacity of 197.2 mA h g-1 can be maintained after 1000 cycles with a coulombic efficiency of 91.1%. Therefore, we firmly believe that this work points the way forward for high-performance materials design and energy storage systems.

3.
Int. microbiol ; 22(2): 227-237, jun. 2019. graf, tab
Article de Anglais | IBECS | ID: ibc-184829

RÉSUMÉ

Chicken feather waste is generally insufficiently utilized despite its high content of protein, constituting an environmental issue. Biodegradation of the waste with enabling microbes provides an advantageous option among the available solutions. In this study, an efficient whole feather-degrading strain was strategically isolated from a soil sample taken from a local tea plantation that has little or nothing to do with feathers. The strain was identified as Bacillus thuringiensis (designated as FDB-10) according to the cloned complete 16S rRNA sequence. The FDB-10 could efficiently degrade briefly heat-treated whole feather (102 °C, 5 min; up to 90% of a maximum concentration of 30 g/L) in a salt medium supplemented with 0.1 g/L yeast extract within 24 h (37°C, 150 rpm). Addition of carbon sources (glycerol, glucose, starch, Tween 20, Tween 80, 1.25 g/L as glycerol) to the fermentation medium could improve the degradation. However, significant inhibition could be observed when the added carbon source reached the amount usually adopted in the investigation of carbon source preference (1%). Nitrogen source (NH4Cl, (NH4)2SO4, peptone) adversely influenced the performance of the strain. When the molar concentrations of NH4+ were equal for the two salt, the inhibitory effect on degradation of whole feathers was similar. Entirely different from other reported feather-degrading strains showing a preference to melanin-free feather substrates, the strain isolated in this study could degrade melanin-containing feather equally efficiently, and higher protease activity could be detected in the digest mix. As a plus, the strain could degrade feathers in rice wash produced in daily cooking, indicating its potential use in the simultaneous treatment of rice cooker wastewater produced by a rice processing plant. All these results imply that the FDB-10 is a strain with great potential in the biodegradation of feather waste


No disponible


Sujet(s)
Animaux , Bacillus thuringiensis/isolement et purification , Plumes/métabolisme , Microbiologie du sol , Bacillus thuringiensis/génétique , Biotransformation , Bacillus thuringiensis/métabolisme , Bacillus thuringiensis/classification , Poulets , Analyse de regroupements , Milieux de culture , ADN bactérien/composition chimique , ADN bactérien/génétique , ADN ribosomique , Déchets industriels , Kératines/métabolisme , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN , Thé/croissance et développement , Température
4.
Int Microbiol ; 22(2): 227-237, 2019 Jun.
Article de Anglais | MEDLINE | ID: mdl-30810985

RÉSUMÉ

Chicken feather waste is generally insufficiently utilized despite its high content of protein, constituting an environmental issue. Biodegradation of the waste with enabling microbes provides an advantageous option among the available solutions. In this study, an efficient whole feather-degrading strain was strategically isolated from a soil sample taken from a local tea plantation that has little or nothing to do with feathers. The strain was identified as Bacillus thuringiensis (designated as FDB-10) according to the cloned complete 16S rRNA sequence. The FDB-10 could efficiently degrade briefly heat-treated whole feather (102 °C, 5 min; up to 90% of a maximum concentration of 30 g/L) in a salt medium supplemented with 0.1 g/L yeast extract within 24 h (37 °C, 150 rpm). Addition of carbon sources (glycerol, glucose, starch, Tween 20, Tween 80, 1.25 g/L as glycerol) to the fermentation medium could improve the degradation. However, significant inhibition could be observed when the added carbon source reached the amount usually adopted in the investigation of carbon source preference (1%). Nitrogen source (NH4Cl, (NH4)2SO4, peptone) adversely influenced the performance of the strain. When the molar concentrations of NH4+ were equal for the two salt, the inhibitory effect on degradation of whole feathers was similar. Entirely different from other reported feather-degrading strains showing a preference to melanin-free feather substrates, the strain isolated in this study could degrade melanin-containing feather equally efficiently, and higher protease activity could be detected in the digest mix. As a plus, the strain could degrade feathers in rice wash produced in daily cooking, indicating its potential use in the simultaneous treatment of rice cooker wastewater produced by a rice processing plant. All these results imply that the FDB-10 is a strain with great potential in the biodegradation of feather waste.


Sujet(s)
Bacillus thuringiensis/isolement et purification , Bacillus thuringiensis/métabolisme , Plumes/métabolisme , Microbiologie du sol , Animaux , Bacillus thuringiensis/classification , Bacillus thuringiensis/génétique , Biotransformation , Poulets , Analyse de regroupements , Milieux de culture , ADN bactérien/composition chimique , ADN bactérien/génétique , ADN ribosomique/composition chimique , ADN ribosomique/génétique , Fermentation , Déchets industriels , Kératines/métabolisme , Phylogenèse , ARN ribosomique 16S/génétique , Analyse de séquence d'ADN , Thé/croissance et développement , Température
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...