Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Am Chem Soc ; 146(36): 25312-25320, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39219059

RÉSUMÉ

A highly efficient Ru-catalyzed asymmetric hydrogenation of α,ß-unsaturated γ-lactams has been developed by using a C2-symmetric ruthenocenyl phosphine-oxazoline as the chiral ligand. This method achieves the enantioselective synthesis of chiral ß-substituted γ-lactams in high yields and with excellent enantioselectivities (up to 99% yield with 99% ee). Mechanistic studies based on detailed control experiments and computational investigation revealed that the cationic Ru-complex acts as the active catalytic species; the protonation process of the oxa-π-allyl-Ru complex, which is formed by the migratory insertion of the C=C double bond to the Ru-H bond (the stereocontrolling step) followed by an isomerization process, is the rate-determining step, and the existence of PPh3 is crucial for the highly efficient catalytic behavior. The protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs and bioactive compounds, particularly for the 150 kg-scale industrial production of Brivaracetam, an antiepileptic drug that shows 13-fold more potent binding to the synaptic vesicle protein 2A compared with the well-known Levetiracetam.

2.
Angew Chem Int Ed Engl ; : e202416313, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39248055

RÉSUMÉ

The asymmetric hydrogenation of benzophenones, catalyzed by low-activity earth-abundant metal copper, has hitherto remained a challenge due to the substrates equipped with two indistinguishably similar aryl groups. In this study, we demonstrated that the prochiral carbon of the ortho-bromine substrate exhibits the highest electrophilicity and high reactivity among the ortho-halogen substituted benzophenones, as determined by the Fukui function (f+) analysis and hydrogenation reaction. Considering that the enantiodirecting functional bromine group can be easily derivatized and removed in the products, we successfully achieved a green copper-catalyzed asymmetric hydrogenation of ortho-bromine substituted benzophenones. This method yielded a series of chiral benzhydrols with excellent results. The utility of this protocol has been validated through a gram-scale reaction and subsequent product transformations. Hirshfeld partition (IGMH) and energy decomposition analysis (EDA) indicate that the CH···HC multiple attractive dispersion interactions (MADI) effect between the catalyst and substrate enhances the catalyst's activity.

3.
Science ; 385(6712): 972-979, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39208090

RÉSUMÉ

The precise control of Z and E configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(Z,R), (Z,S), (E,R), (E,S)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and Z/E selectivities. This success is achieved through a palladium/copper-cocatalyzed three-component assembly of readily available aryl iodides, allenes, and aldimine esters by simply tuning the chiral ligands of the palladium and copper catalysts.

4.
Org Lett ; 26(32): 6835-6840, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39110942

RÉSUMÉ

There are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results. The results of the control experiments demonstrated that the FerroLANE ligand promotes the reaction to proceed along a specific modified Chalk-Harrod mechanism.

5.
Nat Commun ; 15(1): 5482, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38942809

RÉSUMÉ

Transition metal-catalyzed asymmetric hydrogenation is one of the most efficient methods for the preparation of chiral α-substituted propionic acids. However, research on this method, employing cleaner earth-abundant metal catalysts, is still insufficient in both academic and industrial contexts. Herein, we report an efficient nickel-catalyzed asymmetric hydrogenation of α-substituted acrylic acids affording the corresponding chiral α-substituted propionic acids with up to 99.4% ee (enantiomeric excess) and 10,000 S/C (substrate/catalyst). In particular, this method can be used to obtain (R)-dihydroartemisinic acid with 99.8:0.2 dr (diastereomeric ratio) and 5000 S/C, which is an essential intermediate for the preparation of the antimalarial drug Artemisinin. The reaction mechanism has been investigated via experiments and DFT (Density Functional Theory) calculations, which indicate that the protonolysis of the C-Ni bond of the key intermediate via an intramolecular proton transfer from the carboxylic acid group of the substrate, is the rate-determining step.

6.
J Am Chem Soc ; 146(13): 9241-9251, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38502927

RÉSUMÉ

Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this C═C bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.

7.
Angew Chem Int Ed Engl ; 62(47): e202313838, 2023 Nov 20.
Article de Anglais | MEDLINE | ID: mdl-37815160

RÉSUMÉ

Fluorinated amino acids and related peptides/proteins have been found widespread applications in pharmaceutical and agricultural compounds. However, strategies for introducing a C-F bond into amino acids in an enantioselective manner are still limited and no such asymmetric catalysis strategy has been reported. Herein, we have successfully developed a Pd/Cu/Li ternary system for stereodivergent synthesis of chiral fluorinated amino acids. This method involves a sequential desymmetrization of geminal difluoromethylenes and allylic substitution with amino acid Schiff bases via Pd/Li and Pd/Cu dual activation, respectively. A series of non-natural amino acids bearing a chiral allylic/benzylic fluorine motif are easily synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities (up to >20 : 1 dr and >99 % ee). A density functional theory (DFT) study revealed the F-Cu interaction of the allylic substrate and the Cu catalyst significantly influence the stereoselectivity.

8.
Angew Chem Int Ed Engl ; 62(41): e202309859, 2023 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-37610735

RÉSUMÉ

An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.

9.
J Am Chem Soc ; 145(39): 21176-21182, 2023 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-37610861

RÉSUMÉ

Novel axially chiral biphenyl diphosphine ligands Enm-BridgePhos, bearing an ether chain bridge at the 5,5'-position of the biphenyl backbone, have been developed and successfully applied in the Rh-catalyzed enantioselective desymmetric hydrogenation of α-acetamido-1,3-indanediones, providing chiral α-acetamido-ß-hydroxybenzocyclic pentones in high yields (up to 97%) and with excellent enantioselectivities (up to 99% ee). The reaction could be carried out on a gram scale, and the corresponding products were used as vital intermediates for the synthesis of analogues of chiral spirobenzylisoquinoline alkaloids. Both the crystal structure analysis and the DFT calculations revealed that the large dihedral angle of the Enm-BridgePhos-Rh complexes is highly related to the excellent enantioselectivities.

10.
Angew Chem Int Ed Engl ; 62(35): e202306380, 2023 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-37307027

RÉSUMÉ

A highly chemoselective earth-abundant transition metal copper catalyzed asymmetric hydrogenation of C=O bonds of exocyclic α,ß-unsaturated pentanones was realized using H2 . The desired products were obtained with up to 99 % yield and 96 % ee (enantiomeric excess) (99 % ee, after recrystallization). The corresponding chiral exocyclic allylic pentanol products can be converted into several bioactive molecules. The hydrogenation mechanism was investigated via deuterium-labelling experiments and control experiments, which indicate that the keto-enol isomerization rate of the substrate is faster than that of the hydrogenation and also show that the Cu-H complex can only catalyze chemoselectively the asymmetric reduction of the carbonyl group. Computational results indicate that the multiple attractive dispersion interactions (MADI effect) between the catalyst with bulky substituents and substrate play important roles which stabilize the transition states and reduce the generation of by-products.

11.
Angew Chem Int Ed Engl ; 62(25): e202304640, 2023 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-37070236

RÉSUMÉ

Chiral α,ß-unsaturated γ-lactams bearing simple γ- substituents are found in biologically active molecules and natural products, however, their synthesis still remains difficult. Herein, we report an efficient kinetic resolution (KR) of γ-substituted α,ß-unsaturated γ-lactams via a Cu-catalyzed asymmetric boron conjugate addition, which also leads to the efficient synthesis of chiral ß-hydroxy-γ-lactams with ß,γ-stereogenic carbon centers. The KR proceeded smoothly with a wide range of γ-alkyl or aryl substituted substrates including those bearing aromatic heterocycles and different N-protected substrates in up to 347 of s value. Their highly versatile transformations, synthetic utility in biologically active molecules, and inhibitory activities against cisplatin-sensitive ovarian cancer cell A2780 have also been demonstrated. Differing from the well-known mechanism involving Cu-B species in Cu-catalyzed boron conjugate additions, our mechanistic studies using density functional theory (DFT) calculations and experiments indicate that a Lewis acid CuI -catalyzed mechanism is the likely pathway in the catalytic reaction.


Sujet(s)
Tumeurs de l'ovaire , bêta-Lactames , Humains , Femelle , Bore/composition chimique , Lignée cellulaire tumorale , Stéréoisomérie , Catalyse
12.
ACS Macro Lett ; 12(2): 263-268, 2023 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-36734851

RÉSUMÉ

A coumarinacyl anilinium (CAA) salt, facilely synthesized via a one-pot reaction, is shown to be a versatile visible and NIR photoinitiator for cationic and step-growth polymerizations. CAA salt exhibits superior photoinitiation performance as compared to commercial iodonium salt in cationic polymerization. Upon visible-light irradiation, this salt undergoes hemolytic and heterolytic cleavage and subsequent electron transfer and hydrogen abstraction reactions, forming reactive species capable of initiating cationic polymerization of epoxides and vinyl monomers. After a short irradiation period, polymerization also proceeds in the dark due to the non-nucleophilic nature of the counteranion. NIR-induced polymerizations were successfully conducted based on upconversion photochemistry. CAA salt can also initiate step-growth polymerization of N-ethyl carbazole (NEC) by oxidation of the monomer by the photochemically formed anilium radical cations. Subsequent proton release and radical coupling reactions essentially yield polycarbazole. CAA salt, featuring straightforward synthesis and long-wavelength sensitivity as well as versatile photoinitiating performance, has great potential in various applications.

13.
Chemistry ; 29(20): e202300027, 2023 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-36620961

RÉSUMÉ

The allylic alcohol structural motif is prevalent in many important molecules and valuable building blocks. The rearrangement reaction is one of the most important transformations, however there are only a few reports for the 1,3-rearrangement of allylic alcohols. Herein, a 1,3-rearrangement of allylic alcohols catalyzed by an Ir(III) dihydride complex is described. This reaction could provide the corresponding less accessible allylic alcohols regio- and stereoselectively from readily available E/Z mixtures of the substrates. Furthermore, a tandem alkene isomerization followed by 1,3-rearrangement of homoallylic alcohols was also realized. In addition, this rearrangement reaction could be used to synthesize the natural product Navenone B. Mechanistic investigation indicated that the reaction pathway involved a π-allyl-Ir(V) intermediate and that the dihydride in the iridium catalyst acts as a hydrogen switch to modulate the valence of the iridium center.

14.
Angew Chem Int Ed Engl ; 62(9): e202218146, 2023 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-36594710

RÉSUMÉ

The stereodivergent synthesis of allene compounds bearing α,ß-adjacent central chiralities has been realized via the Pd/Cu-catalyzed dynamic kinetic asymmetric alkylation of racemic allenylic esters. The matched reactivity of bimetallic catalytic system enables the challenging reaction of racemic aryl-substituted allenylic acetates with sterically crowded aldimine esters smoothly under mild reaction conditions. Various chiral non-natural amino acids bearing a terminal allenyl group are easily synthesized in high yields and with excellent diastereo- and enantioselectivities (up to >20 : 1 dr, >99 % ee). Importantly, all four stereoisomers of the product can be readily accessed by switching the configurations of the two chiral metal catalysts. Furthermore, the easy interconversion between the uncommon η3 -butadienyl palladium intermediate featuring a weak C=C/Pd coordination bond and a stable Csp2 -Pd bond is beneficial for the dynamic kinetic asymmetric transformation process (DyKAT).

16.
J Am Chem Soc ; 144(43): 20078-20089, 2022 11 02.
Article de Anglais | MEDLINE | ID: mdl-36255361

RÉSUMÉ

Rh-catalyzed sequential asymmetric hydrogenations of 3-amino-4-chromones have been achieved for the first time via an unprecedented dynamic kinetic resolution under neutral conditions, providing (S,R)-3-amino-4-chromanols in high yields (up to 98%) with excellent enantio- and diastereoselectivities (up to 99.9% ee and 20:1 dr). The mechanistic studies based on control experiments and density functional theory (DFT) calculations suggest that the dynamic kinetic resolution process for the intermediate enantiomers generated in the first hydrogenation step proceeded via a stereomutation (or called chiral assimilation) pathway from an undesired enantiomer to the desired enantiomer rather than via traditional racemization of the undesired enantiomer. The protocol can be performed on a gram scale with a relatively low catalyst loading and offers a practical and convenient pathway for synthesizing a series of bioactive chromanols and their derivatives.


Sujet(s)
Rhodium , Hydrogénation , 4H-1-Benzopyran-4-ones , Stéréoisomérie , Catalyse
17.
Chemistry ; 28(24): e202200273, 2022 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-35262998

RÉSUMÉ

Asymmetric desymmetrization has been demonstrated to be a powerful strategy for building stereocenters in asymmetric synthesis. Herein, a Pd/Cu catalyzed asymmetric desymmetrization reaction with a simple geminal dicarboxylate is reported. A wide scope of imino esters bearing an aryl or heteroaromatic group were compatible with this bimetallic catalytic system. The reactions proceeded smoothly, giving the desired products in good yields with high to excellent regio-, diastereo-, and enantioselectivity (up to 20 : 1 branched:linear, >20 : 1 dr, >99 % ee). Notably, the reaction favored branched selectivity, which is unusual for the Pd-catalyzed allylic alkylation reaction. In addition, the standard product could be easily transformed to other valuable molecules such as chiral allylic alcohols, carbamates, and organic boron compounds. Furthermore, DFT calculations were conducted to explain the origin of the branched selectivity.

18.
Angew Chem Int Ed Engl ; 61(23): e202203448, 2022 06 07.
Article de Anglais | MEDLINE | ID: mdl-35319811

RÉSUMÉ

The first asymmetric Ni/Cu cocatalyzed benzylation of aldimine esters is reported. A series of benzyl-substituted α-quaternary amino acids could be synthesized in high yield and with high levels of enantioselectivity (up to 90 % yield and 99 % ee). The experimental and theoretical calculation results suggested that the strong electrophilicity of the η3 -benzylnickel intermediate is crucial for the high reactivity, enabling the reaction under base-free conditions. Furthermore, this method has been applied to the synthesis of the cell adhesion inhibitor BIRT-377 analogues, and the key intermediate of the NK1 receptor antagonist PD154075 and CCK-B receptor antagonist CI-988.


Sujet(s)
Esters , Nickel , Acides aminés/composition chimique , Catalyse , Cuivre/composition chimique , Esters/composition chimique , Structure moléculaire , Stéréoisomérie
19.
Nat Commun ; 13(1): 400, 2022 01 20.
Article de Anglais | MEDLINE | ID: mdl-35058446

RÉSUMÉ

N,O-acetals are part of many synthetic intermediates and important skeletons of numerous natural products and pharmaceutical drugs. The most straightforward method of the synthesis of N,O-acetals is the enantioselective addition of O-nucleophiles to imines. However, using this method for the synthesis of linear chiral N,O-ketals still remains challenging due to the instability of raw materials under acidic or basic conditions. Herein, we developed a Cu-catalyzed asymmetric addition of alcohols to ß,γ-alkynyl-α-imino esters under mild conditions, providing the corresponding linear chiral N,O-ketals with up to 96% ee. The method tolerates some variation in the ß,γ-alkynyl-α-imino ester and alcohol scope, including some glucose and natural amino acid derivatives. Computational results indicate that the Boc group of the substrates assist in the extraction of hydrogen atoms from the alcohols to promote the addition reactions. These products could be synthesized on a gram-scale and can be used in several transformations. This asymmetric addition system provides an efficient, mild, gram-scale, and transition-metal-catalyzed synthesis of linear chiral N,O-ketals.

20.
Angew Chem Int Ed Engl ; 60(47): 24941-24949, 2021 11 15.
Article de Anglais | MEDLINE | ID: mdl-34532948

RÉSUMÉ

The development of efficient and straightforward methods for obtaining all optically active isomers of structurally rigid spirocycles from readily available starting materials is of great value in drug discovery and chiral ligand development. However, the stereodivergent synthesis of spirocycles bearing multiple stereocenters remains an unsolved challenge owing to steric hindrance and ring strain. Herein, we report an enantio- and diastereodivergent synthesis of rigid spirocycles through dual-metal-catalyzed [3+2] annulation of oxy π-allyl metallic dipoles with less commonly employed nucleophilic dipoles (imino esters). A series of spiro compounds bearing a pyrroline and an olefin were easily synthesized in an enantio- and diastereodivergent manner (up to 19:1 dr, >99 % ee), which showed great promise as a new type of N-olefin ligand. Preliminary mechanistic studies were also carried out to understand the process of this bimetallic catalysis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE