Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 231
Filtrer
1.
Front Vet Sci ; 11: 1413920, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966563

RÉSUMÉ

A 42-days study was conducted to evaluate the effects of different dietary types (corn-or wheat-soybean meal-based diet) and phytase (Phy) or a multi-carbohydrase and phytase complex (MCPC) supplementation on growth performance, digestibility of phosphorus (P), intestinal transporter gene expression, plasma indexes, bone parameters, and fecal microbiota in growing pigs. Seventy-two barrows (average initial body weight of 24.70 ± 0.09 kg) with a 2 × 3 factorial arrangement of treatments and main effects of diet type (corn-or wheat-soybean meal-based-diets) and enzyme supplementation (without, with Phy or with MCPC). Each group was designed with 6 replicate pens. The MCPC increased (p < 0.05) average daily gain (ADG) and final body weight (BW). A significant interaction (p = 0.01) was observed between diet type and enzyme supplementation on apparent total tract digestibility (ATTD) of P. The ATTD of P was higher (p < 0.05) in wheat soybean meal-based diets compared to corn-soybean meal-based diets. Compared with the corn-soybean meal-based diet, the relative expression of SLC34A2 and VDR genes in the ileum and SLC34A3 in jejunum of growing pigs fed the wheat-soybean meal based diet was lower (p < 0.05). The MCPC significantly reduced (p < 0.05) the relative expression of TRPV5 and CALB1 genes in the ileum and increased the expression of CALB1 in the duodenum compared to control diet. The phytase increased (p < 0.05) the relative expression of SLC34A1 gene in the duodenum in comparison to control diet and MCPC-supplemented diet. The Ca and P contents in plasma from pigs fed corn-soybean meal-based diet were higher (p < 0.05) than those from pigs fed wheat-soybean meal-based diet, and the parathyroid hormone (PTH) and calcitonin (CT) concentrations were lower (p < 0.05) than those fed wheat-soybean meal-based diet. The content of Ca and P in the femur and the bone strength of pigs in the corn-soybean meal group were significantly higher (p < 0.05) than those in the wheat-soybean meal groups. The phytase increased (p < 0.05) the Ca and P content and bone strength of the femur. Additionally, diet type and both enzymes significantly improved fecal microbial diversity and composition. Taken together, diet type and exogenous enzymes supplementation could differently influence the growth performance, utilization of phosphorus, intestinal transporter gene expression, bone mineralization and microbial diversity and composition in growing pigs.

2.
J Anim Sci ; 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39001695

RÉSUMÉ

To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n=6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), D-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.

3.
Elife ; 122024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38913071

RÉSUMÉ

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Sujet(s)
Eugénol , Interleukine-15 , Fibres musculaires squelettiques , Facteurs de transcription NFATC , Conditionnement physique d'animal , Canaux cationiques TRPV , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRPV/génétique , Animaux , Interleukine-15/métabolisme , Eugénol/pharmacologie , Eugénol/métabolisme , Souris , Fibres musculaires squelettiques/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Facteurs de transcription NFATC/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Mâle , Souris de lignée C57BL ,
4.
Front Vet Sci ; 11: 1351962, 2024.
Article de Anglais | MEDLINE | ID: mdl-38689852

RÉSUMÉ

Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.

5.
J Chem Phys ; 160(19)2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38747431

RÉSUMÉ

In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas-surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300-750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas-surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas-surface energy transfer and the roles of molecular degrees of freedom in gas-surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas-surface encounters occurring under high-velocity flows.

6.
Anim Nutr ; 17: 110-122, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38766519

RÉSUMÉ

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

7.
Phys Chem Chem Phys ; 26(15): 11395-11405, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38572584

RÉSUMÉ

The initial decomposition pathways of α-FOX-7 in the condensed phase (crystal) were investigated via density functional theory. Calculations were carried out using three FOX-7 systems with increasing complexity from 1-layer (sheet) via 2-layer (surface) to 3-layer (bulk). The encapsulated environment of the central α-FOX-7 molecule, where decomposition takes place, is reconstructed by neighbouring molecules following a crystal structure. A minimal number of neighbouring molecules that have an impact on the energetics of decomposition are identified among all surrounding molecules. The results show that the presence of intermolecular hydrogen bonds due to the encapsulated environment in the condensed phase decreases the sensitivity of α-FOX-7, i.e. it increases the barrier of decomposition, but it does not alter the initial decomposition pathways of the reaction compared to the gas phase. Moreover, increasing the complexity of the system from a single gas phase molecule via sheet and surface to bulk increases the decomposition barriers. The calculations reveal a remarkable agreement with experimental data [A. M. Turner, Y. Luo, J. H. Marks, R. Sun, J. T. Lechner, T. M. Klapötke and R. I. Kaiser, Exploring the Photochemistry of Solid 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) Spanning Simple Bon Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics, J. Phys. Chem. A, 2022, 126, 29, 4747-4761] and suggest that the initial decomposition of α-FOX-7 likely takes place at the surface of the crystal.

8.
Int J Biol Macromol ; 268(Pt 1): 131589, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38643924

RÉSUMÉ

This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1ß and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.


Sujet(s)
Antioxydants , Broussonetia , Stress oxydatif , Feuilles de plante , Polyosides , Animaux , Stress oxydatif/effets des médicaments et des substances chimiques , Polyosides/pharmacologie , Polyosides/composition chimique , Rats , Mâle , Feuilles de plante/composition chimique , Antioxydants/pharmacologie , Broussonetia/composition chimique , Jéjunum/effets des médicaments et des substances chimiques , Jéjunum/métabolisme , Jéjunum/anatomopathologie , Intestins/effets des médicaments et des substances chimiques , Intestins/anatomopathologie , Régime alimentaire , Modèles animaux de maladie humaine , Muqueuse intestinale/effets des médicaments et des substances chimiques , Muqueuse intestinale/métabolisme , Muqueuse intestinale/anatomopathologie , Espèces réactives de l'oxygène/métabolisme , Rat Sprague-Dawley , Peroxydation lipidique/effets des médicaments et des substances chimiques
9.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38638069

RÉSUMÉ

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Sujet(s)
Acide butyrique , Microbiome gastro-intestinal , Extrait de pépins de raisin , Souris de lignée BALB C , Proanthocyanidines , Animaux , Proanthocyanidines/pharmacologie , Mâle , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Extrait de pépins de raisin/pharmacologie , Souris , Acide butyrique/métabolisme , Acide butyrique/pharmacologie , Caecum/microbiologie , Caecum/métabolisme , Fibres musculaires squelettiques/effets des médicaments et des substances chimiques , Fibres musculaires à contraction lente/effets des médicaments et des substances chimiques , Fibres musculaires à contraction lente/métabolisme , Fibres musculaires à contraction rapide/effets des médicaments et des substances chimiques , Fibres musculaires à contraction rapide/métabolisme , Muscles squelettiques/effets des médicaments et des substances chimiques , Bactéries/effets des médicaments et des substances chimiques , Bactéries/classification
10.
Elife ; 122024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38442142

RÉSUMÉ

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Sujet(s)
Syndrome de libération de cytokines , Interleukine-4 , Animaux , Souris , Récepteurs hépatiques X , Leucine/pharmacologie , Lipopolysaccharides , Cytokines , Transduction du signal , Macrophages , Complexe-1 cible mécanistique de la rapamycine
11.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38331814

RÉSUMÉ

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

12.
Animals (Basel) ; 14(3)2024 Feb 05.
Article de Anglais | MEDLINE | ID: mdl-38338165

RÉSUMÉ

Post-weaning diarrhea significantly contributes to the high mortality in pig production, but the metabolic changes in weaned piglets with diarrhea remain unclear. This study aimed to identify the differential metabolites in the urine of diarrheal weaned piglets and those of healthy weaned piglets to reveal the metabolic changes associated with diarrhea in weaned piglets. Nine 25-day-old piglets with diarrhea scores above 16 and an average body weight of 5.41 ± 0.18 kg were selected for the diarrhea group. Corresponding to the body weight and sex of the diarrhea group, nine 25-month-old healthy piglets with similar sex and body weights of 5.49 ± 0.21 kg were selected as the control group. Results showed that the serum C-reactive protein and cortisol of piglets in the diarrhea group were higher than those in the control group (p < 0.05). The mRNA expression of TNF-α, IFN-γ in the jejunum and colon, and IL-1ß in the jejunum were increased in diarrhea piglets (p < 0.05), accompanied by a reduction in the mRNA expression of ZO-1, ZO-2, and CLDN1 in the jejunum and colon (p < 0.05); mRNA expression of OCLN in the colon also occurred (p < 0.05). Metabolomic analysis of urine revealed increased levels of inosine, hypoxanthine, guanosine, deoxyinosin, glucosamine, glucosamine-1-p, N-Acetylmannosamine, chitobiose, and uric acid, identified as differential metabolites in diarrhea piglets compared to the controls. In summary, elevated weaning stress and inflammatory disease were associated with the abnormalities of purine metabolism and the hexosamine biosynthetic pathway of weaned piglets. This study additionally indicated the presence of energy metabolism-related diseases in diarrheal weaned piglets.

13.
Meat Sci ; 210: 109436, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38266434

RÉSUMÉ

Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.


Sujet(s)
Extrait de pépins de raisin , , Proanthocyanidines , Viande rouge , Suidae , Animaux , Fibres musculaires squelettiques/métabolisme , Extrait de pépins de raisin/pharmacologie , Compléments alimentaires , Muscles squelettiques/métabolisme
14.
Mol Nutr Food Res ; 68(4): e2200719, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38193241

RÉSUMÉ

SCOPE: Endurance capacity is essential for endurance athletes' achievement and individuals' health. Nutritional supplements are a proven way to enhance endurance capacity. Previous studies have shown that ferulic acid (FA) enhances endurance capacity, but the underlying mechanism is unclear. The study is aimed to investigate the mechanism by which FA increases endurance capacity. METHODS AND RESULTS: Forty mice are divided into control and 0.5% FA-supplemented groups, and an exhaustive swimming test demonstrates increased endurance capacity with FA supplementation. This study investigates the underlying mechanism for this effect of FA. Firstly, RT-PCR and western blot analysis find that FA increases the transformation from fast to slow muscle fiber. Additionally, adenosine triphosphate concentration, metabolic enzyme activity, and mitochondrial DNA analysis find that FA increases mitochondrial biogenesis and activates nuclear factor erythroid 2-related factor (NRF)1 signaling pathway in muscle. Besides, through antioxidant capacity analysis, this study finds that FA activates NRF2 signaling pathway and improves the antioxidant capacity in muscle. Moreover, inhibiting NRF2 eliminates FA's effect on muscle fiber transformation in C2C12 cells. CONCLUSION: Our results suggest that FA increases endurance capacity by promoting skeletal muscle oxidative phenotype, mitochondrial function, and antioxidant capacity, which may be related to the NRF1 and NRF2 signaling pathways.


Sujet(s)
Antioxydants , Acides coumariques , Facteur-2 apparenté à NF-E2 , Humains , Souris , Animaux , Antioxydants/pharmacologie , Antioxydants/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Muscles squelettiques/métabolisme , Mitochondries , Phénotype , Stress oxydatif
15.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38198728

RÉSUMÉ

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Sujet(s)
Escherichia coli entérotoxigène , Infections à Escherichia coli , Huile essentielle , Maladies des porcs , Suidae , Mâle , Animaux , Saccharomyces cerevisiae , Facteur de nécrose tumorale alpha , Huile essentielle/pharmacologie , Infections à Escherichia coli/prévention et contrôle , Infections à Escherichia coli/médecine vétérinaire , Diarrhée/microbiologie , Diarrhée/médecine vétérinaire , Régime alimentaire/médecine vétérinaire , Inflammation/médecine vétérinaire , Superoxide dismutase , Maladies des porcs/prévention et contrôle , Maladies des porcs/microbiologie , Aliment pour animaux/analyse , Sevrage
16.
J Anim Sci ; 1022024 Jan 03.
Article de Anglais | MEDLINE | ID: mdl-38290533

RÉSUMÉ

An experiment was conducted to determine the effects of betaine on growth performance and intestinal health in rabbits fed diets with different levels of digestible energy. During a 36-d experiment, a total of 144 healthy 35-d-old weaned New Zealand white rabbits with a similar initial body weight (771.05 ±â€…41.79 g) were randomly distributed to a 2 × 3 factorial arrangement. Experimental treatments consisted of two levels of digestible energy (normal: 10.20 and low: 9.60 MJ/kg) and three levels of betaine (0, 500, and 1,000 mg/kg). Results indicated that rabbits fed the diet with low digestible energy (LDE) had reduced body gain/feed intake on days 1 to 14 and 1 to 36 (P < 0.05), increased the apparent total tract digestibility (ATTD) of neutral detergent fiber, acid detergent fiber (ADF), and n-free extract, and decreased the ATTD of gross energy (GE), crude fiber, and organic matter (OM; P < 0.05). The LDE diet upregulated the gene abundance levels of duodenum junctional adhesion molecule-3 (JAM-3) and downregulated the ileum toll-like receptor 4, myeloid differentiation factor 88, and interleukin-6 (IL-6; P < 0.05). Activities of amylase, lipase, trypsin, and the immunoglobulin M content in the jejunum were decreased in the LDE treatment group (P < 0.05). Dietary betaine supplementation increased the ATTD of GE, dry matter (DM), ADF, and n-free extract by LDE (P < 0.05). The villus height, crypt depth, and goblet cell numbers were decreased, and the villus-crypt ratio was increased in the duodenum (P < 0.05). The gene abundance levels of duodenum IL-2 were downregulated, and the duodenum JAM-2 and JAM-3 were upregulated (P < 0.05). Furthermore, the addition of betaine to the LDE diet increased the ATTD of GE, DM, and OM in rabbits (P < 0.05). Gene abundance levels of ileum IL-6 and duodenum JAM-3 were upregulated (P < 0.05). In summary, LDE diets can reduce the activity of intestinal digestive enzymes and decrease the ATTD of nutrients. However, the addition of betaine to LDE diets improved the intestinal barrier structure and nutrient ATTD in rabbits, with better results when betaine was added at an additive level of 500 mg/kg.


Insufficient dietary energy can cause many negative effects on animal production and cause intestinal diseases, which are one of the main causes of morbidity and mortality in rabbits. Results of some experiments demonstrated that betaine has various physiological functions such as improving energy utilization and intestinal health. Therefore, the aim of this study was to evaluate the effects of betaine supplementation on growth performance, intestinal function, and health in rabbits fed diets with different levels of digestible energy. The results showed that the addition of betaine to a low-digestible energy diet improved the gut barrier structure and nutrient digestibility in rabbits.


Sujet(s)
Bétaïne , Détergents , Lapins , Animaux , Bétaïne/pharmacologie , Détergents/pharmacologie , Interleukine-6 , Digestion , Régime alimentaire/médecine vétérinaire
17.
J Nutr Biochem ; 123: 109507, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-37890712

RÉSUMÉ

In recent years, the impact of bile acids and their representative G protein-coupled bile acid receptor 1 Takeda-G-protein-receptor-5 (TGR5) signaling pathway on muscle function and metabolic health has gained considerable interest. Increasing the content of slow muscle fibers has been recognized as an effective strategy to improve metabolic health. Oleanolic acid (OA) is a naturally occurring triterpenoid compound derived from plants, which can activate TGR5. The aim of this study was to investigate the effect of OA and TGR5 on muscle fiber types and further explore the underlying TGR5-dependent mechanisms. In this study, mice were divided into three groups and dietary supplementation with 0, 50, or 100 mg/kg OA. In addition, C2C12 cells were treated with OA at concentrations of 0, 5, 10, and 20 µM. Our studies revealed that OA promoted the conversion of fast to slow muscle fibers. In addition, it was found that OA activated the TGR5-mediated calcineurin (CaN)/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Further mechanistic investigations demonstrated that inhibiting TGR5 and CaN abolished the effects of OA on muscle fiber types transformation. In conclusion, this study found that OA promotes the transformation of fast muscle fibers to slow muscle fibers through the TGR5-mediated CaN/NFATc1 signaling pathway.


Sujet(s)
Calcineurine , Acide oléanolique , Transduction du signal , Animaux , Souris , Calcineurine/métabolisme , Fibres musculaires squelettiques/métabolisme , Muscles squelettiques/métabolisme , Acide oléanolique/pharmacologie , Acide oléanolique/métabolisme , Récepteurs couplés aux protéines G/métabolisme
18.
Carbohydr Polym ; 326: 121613, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38142074

RÉSUMÉ

This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 â†’ 3)-ß-ᴅ-Galp-(1→3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-ß-ᴅ-Galp-(1→, →3,4)-ß-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.


Sujet(s)
Antioxydants , Yucca , Suidae , Animaux , Rats , Antioxydants/composition chimique , Yucca/composition chimique , Phosphatidylinositol 3-kinases , Polyosides/composition chimique
19.
Anim Nutr ; 15: 420-429, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38058565

RÉSUMÉ

To explore the effects of fermented rapeseed meal (FRSM) on growth performance and intestinal health, a total of 30 growing pigs were randomly allotted to three treatments consisting of corn-soybean meal diet (CSD), rapeseed meal diet (RSD), and fermented rapeseed meal diet (FRSD). Results showed that compared with RSD, FRSD feeding increased the average daily gain and final body weight in pigs (P < 0.01). Compared with RSD feeding, FRSD feeding elevated the apparent digestibility of crude protein, acid detergent fiber, and ether extract in pigs (P < 0.01). Moreover, the FRSD group exhibited greater apparent ileal digestibility of His, Thr, Lys, and Ser than the RSD group (P < 0.01). The digestible energy, metabolic energy, and nitrogen utilization were higher in the FRSD and CSD groups than in the RSD group (P < 0.01). As compared to the RSD, FRSD feeding decreased the serum concentration of leptin but significantly increased the concentrations of immunoglobulin (Ig) A, IgG, ghrelin, and enzyme activities of amylase, lipase, and trypsin in the pancreas (P < 0.05). Interestingly, the villus height, the ratio of villus height to crypt depth, and the activities of brush border enzymes (e.g., maltase and sucrase) in the small intestine were higher in the CSD and FRSD groups than in the RSD group (P < 0.05). As compared to the RSD, the FRSD feeding not only increased the expression level of the occludin in the small intestinal epithelium (P < 0.05) but also elevated the expression levels of claudin-1, MUC1, and PepT1 genes in the duodenum, and elevated the expression levels of SGLT1 and CAT1 genes in the jejunum (P < 0.05). Importantly, FRSD feeding significantly decreased the abundance of Escherichia coli, but increased the abundance of Lactobacillus and the content of butyrate in the cecum and colon (P < 0.05). These results indicated that compared with rapeseed meal, fermented rapeseed meal exhibited a positive effect on improving the growth performance and intestinal health in growing pigs, and the results may also help develop novel protein sources for animal nutrition and the feed industry.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...