Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Commun Biol ; 7(1): 675, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824179

RÉSUMÉ

The three-dimensional (3D) organization of genome is fundamental to cell biology. To explore 3D genome, emerging high-throughput approaches have produced billions of sequencing reads, which is challenging and time-consuming to analyze. Here we present Microcket, a package for mapping and extracting interacting pairs from 3D genomics data, including Hi-C, Micro-C, and derivant protocols. Microcket utilizes a unique read-stitch strategy that takes advantage of the long read cycles in modern DNA sequencers; benchmark evaluations reveal that Microcket runs much faster than the current tools along with improved mapping efficiency, and thus shows high potential in accelerating and enhancing the biological investigations into 3D genome. Microcket is freely available at https://github.com/hellosunking/Microcket .


Sujet(s)
Génomique , Logiciel , Génomique/méthodes , Séquençage nucléotidique à haut débit/méthodes , Humains , Analyse de séquence d'ADN/méthodes , Analyse de données
2.
Nat Commun ; 15(1): 4327, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38773088

RÉSUMÉ

The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy.


Sujet(s)
Lymphocytes T CD8+ , Histone Demethylases , Histone Demethylases/antagonistes et inhibiteurs , Histone Demethylases/métabolisme , Animaux , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/effets des médicaments et des substances chimiques , Souris , Humains , Femelle , Souris de lignée C57BL , Immunothérapie adoptive/méthodes , Lignée cellulaire tumorale , Activation des lymphocytes/effets des médicaments et des substances chimiques , Transfert adoptif , Tumeurs/immunologie , Tumeurs/thérapie , Tumeurs/traitement médicamenteux , Récepteurs aux antigènes des cellules T/métabolisme , Récepteurs aux antigènes des cellules T/immunologie , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Récepteur-1 de mort cellulaire programmée/métabolisme , Interleukine-2/métabolisme , Antigènes CD19/métabolisme , Antigènes CD19/immunologie , Mémoire immunologique/effets des médicaments et des substances chimiques
3.
Nat Commun ; 14(1): 6314, 2023 10 09.
Article de Anglais | MEDLINE | ID: mdl-37813869

RÉSUMÉ

Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation. Recruitment of CTCF to new sites in the genome involves demethylation of H3K9me3 to H3K9me2, demethylation of DNA, recruitment of pioneer factors, and positioning of nucleosomes flanking the new CTCF sites. Existing CTCF sites not involved in loop formation become functional loop anchors via the establishment of new cohesin loading sites containing NIPBL and YY1 at sites between the new anchors. In both cases, formation of new CTCF loops leads to strengthening of enhancer promoter interactions and increased transcription of genes adjacent to loop anchors. These results suggest an important role for CTCF and cohesin in controlling gene expression during cell differentiation.


Sujet(s)
Facteur de liaison à la séquence CCCTC , Chromatine , ADN , Humains , Facteur de liaison à la séquence CCCTC/génétique , Facteur de liaison à la séquence CCCTC/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Différenciation cellulaire/génétique , ADN/métabolisme , Liaison aux protéines
4.
Genes (Basel) ; 13(12)2022 12 16.
Article de Anglais | MEDLINE | ID: mdl-36553649

RÉSUMÉ

The appropriate deployment of developmental programs depends on complex genetic information encoded by genomic DNA sequences and their positioning and contacts in the three-dimensional (3D) space within the nucleus. Current studies using novel techniques including, but not limited to, Hi-C, ChIA-PET, and Hi-ChIP reveal that regulatory elements (Res), such as enhancers and promoters, may participate in the precise regulation of expression of tissue-specific genes important for both embryogenesis and organogenesis by recruiting Polycomb Group (PcG) complexes. PcG complexes usually poise the transcription of developmental genes by forming Polycomb bodies to compact poised enhancers and promoters marked by H3K27me3 in the 3D space. Additionally, recent studies have also uncovered their roles in transcriptional activation. To better understand the full complexities in the mechanisms of how PcG complexes regulate transcription and long-range 3D contacts of enhancers and promoters during developmental programs, we outline novel insights regarding PcG-associated dramatic changes in the 3D chromatin conformation in developmental programs of early embryos and naïve-ground-state transitions of pluripotent embryonic stem cells (ESCs), and highlight the distinct roles of unique and common subunits of canonical and non-canonical PcG complexes in shaping genome architectures and transcriptional programs.


Sujet(s)
Chromatine , Protéines de Drosophila , Chromatine/génétique , Protéines du groupe Polycomb/génétique , Protéines du groupe Polycomb/métabolisme , Chromosomes/métabolisme , Développement embryonnaire/génétique , Protéines de Drosophila/génétique
5.
Science ; 372(6540): 371-378, 2021 04 23.
Article de Anglais | MEDLINE | ID: mdl-33888635

RÉSUMÉ

The temporal order of DNA replication [replication timing (RT)] is correlated with chromatin modifications and three-dimensional genome architecture; however, causal links have not been established, largely because of an inability to manipulate the global RT program. We show that loss of RIF1 causes near-complete elimination of the RT program by increasing heterogeneity between individual cells. RT changes are coupled with widespread alterations in chromatin modifications and genome compartmentalization. Conditional depletion of RIF1 causes replication-dependent disruption of histone modifications and alterations in genome architecture. These effects were magnified with successive cycles of altered RT. These results support models in which the timing of chromatin replication and thus assembly plays a key role in maintaining the global epigenetic state.


Sujet(s)
Déroulement de la réplication de l'ADN , Épigenèse génétique , Épigénome , Protéines télomériques/métabolisme , Lignée cellulaire , Chromatine/métabolisme , Assemblage et désassemblage de la chromatine , Réplication de l'ADN , Expression des gènes , Techniques de knock-out de gènes , Génome humain , Hétérochromatine/métabolisme , Code histone , Histone/métabolisme , Humains , Protéines télomériques/génétique
6.
Cell Rep ; 28(10): 2715-2727.e5, 2019 09 03.
Article de Anglais | MEDLINE | ID: mdl-31484080

RÉSUMÉ

Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.


Sujet(s)
Chromatine/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/génétique , Ecdysone/pharmacologie , Éléments activateurs (génétique)/génétique , Protéines nucléaires/métabolisme , Complexe répresseur Polycomb-1/métabolisme , Motifs d'acides aminés , Animaux , Lignée cellulaire , Protéines de Drosophila/composition chimique , Drosophila melanogaster/effets des médicaments et des substances chimiques , Protéines nucléaires/composition chimique , Complexe répresseur Polycomb-1/composition chimique , Régions promotrices (génétique)/génétique , Liaison aux protéines/effets des médicaments et des substances chimiques , Domaines protéiques , Isoformes de protéines/métabolisme
7.
Stem Cell Reports ; 13(1): 193-206, 2019 07 09.
Article de Anglais | MEDLINE | ID: mdl-31231024

RÉSUMÉ

The temporal order of DNA replication is regulated during development and is highly correlated with gene expression, histone modifications and 3D genome architecture. We tracked changes in replication timing, gene expression, and chromatin conformation capture (Hi-C) A/B compartments over the first two cell cycles during differentiation of human embryonic stem cells to definitive endoderm. Remarkably, transcriptional programs were irreversibly reprogrammed within the first cell cycle and were largely but not universally coordinated with replication timing changes. Moreover, changes in A/B compartment and several histone modifications that normally correlate strongly with replication timing showed weak correlation during the early cell cycles of differentiation but showed increased alignment in later differentiation stages and in terminally differentiated cell lines. Thus, epigenetic cell fate transitions during early differentiation can occur despite dynamic and discordant changes in otherwise highly correlated genomic properties.


Sujet(s)
Reprogrammation cellulaire/génétique , Chromatine/génétique , Déroulement de la réplication de l'ADN , Cellules souches/métabolisme , Transcription génétique , Cycle cellulaire/génétique , Différenciation cellulaire/génétique , Lignage cellulaire/génétique , Chromatine/métabolisme , Cellules souches embryonnaires/cytologie , Cellules souches embryonnaires/métabolisme , Analyse de profil d'expression de gènes , Humains , Modèles biologiques , Cellules souches/cytologie
8.
Mol Cell ; 75(1): 154-171.e5, 2019 07 11.
Article de Anglais | MEDLINE | ID: mdl-31056445

RÉSUMÉ

The epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos. Sperm distal ATAC-seq sites containing motifs for various transcription factors are conserved in monkeys and humans. ChIP-seq analyses confirm that Foxa1, ERα, and AR occupy distal enhancers in sperm. Accessible sperm enhancers containing H3.3 and H2A.Z are also accessible in oocytes and preimplantation embryos. Furthermore, their interactions with promoters in the gametes persist during early development. Sperm- or oocyte-specific interactions mediated by CTCF and cohesin are only present in the paternal or maternal chromosomes, respectively, in the zygote and 2-cell stages. These interactions converge in both chromosomes by the 8-cell stage. Thus, mammalian gametes contain complex patterns of 3D interactions that can be transmitted to the zygote after fertilization.


Sujet(s)
Facteur de liaison à la séquence CCCTC/génétique , Facteur nucléaire hépatocytaire HNF-3 bêta/génétique , Ovocytes/métabolisme , Spermatozoïdes/métabolisme , Zygote/métabolisme , Animaux , Séquence nucléotidique , Facteur de liaison à la séquence CCCTC/métabolisme , Chromatine/composition chimique , Chromatine/métabolisme , Séquence conservée , Embryon de mammifère , Développement embryonnaire/génétique , Éléments activateurs (génétique) , Récepteur alpha des oestrogènes/génétique , Récepteur alpha des oestrogènes/métabolisme , Récepteur bêta des oestrogènes/génétique , Récepteur bêta des oestrogènes/métabolisme , Femelle , Régulation de l'expression des gènes au cours du développement , Facteur nucléaire hépatocytaire HNF-3 bêta/métabolisme , Humains , Macaca mulatta , Mâle , Souris , Ovocytes/cytologie , Ovocytes/croissance et développement , Récepteurs aux androgènes/génétique , Récepteurs aux androgènes/métabolisme , Similitude de séquences d'acides nucléiques , Spermatozoïdes/cytologie , Spermatozoïdes/croissance et développement , Doigts de zinc/génétique , Zygote/cytologie , Zygote/croissance et développement
9.
Cell Rep ; 26(11): 2890-2903.e3, 2019 03 12.
Article de Anglais | MEDLINE | ID: mdl-30865881

RÉSUMÉ

Interaction domains in Drosophila chromosomes form by segregation of active and inactive chromatin in the absence of CTCF loops, but the role of transcription versus other architectural proteins in chromatin organization is unclear. Here, we find that positioning of RNAPII via transcription elongation is essential in the formation of gene loops, which in turn interact to form compartmental domains. Inhibition of transcription elongation or depletion of cohesin decreases gene looping and formation of active compartmental domains. In contrast, depletion of condensin II, which also localizes to active chromatin, causes increased gene looping, formation of compartmental domains, and stronger intra-chromosomal compartmental interactions. Condensin II has a similar role in maintaining inter-chromosomal interactions responsible for pairing between homologous chromosomes, whereas inhibition of transcription elongation or cohesin depletion has little effect on homolog pairing. The results suggest distinct roles for cohesin and condensin II in the establishment of 3D nuclear organization in Drosophila.


Sujet(s)
Adenosine triphosphatases/métabolisme , Protéines du cycle cellulaire/métabolisme , Assemblage et désassemblage de la chromatine , Chromatine/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Protéines de liaison à l'ADN/métabolisme , Complexes multiprotéiques/métabolisme , RNA polymerase II/métabolisme , Adenosine triphosphatases/composition chimique , Animaux , Protéines du cycle cellulaire/composition chimique , Lignée cellulaire , Chromatine/composition chimique , Chromatine/génétique , Protéines chromosomiques nonhistones/composition chimique , Protéines de liaison à l'ADN/composition chimique , Drosophila melanogaster , Femelle , Mâle , Souris , Complexes multiprotéiques/composition chimique , RNA polymerase II/composition chimique ,
11.
Mol Cell ; 71(6): 940-955.e7, 2018 09 20.
Article de Anglais | MEDLINE | ID: mdl-30122536

RÉSUMÉ

Cells respond to temperature stress via up- and downregulation of hundreds of genes. This process is thought to be regulated by the heat shock factor HSF1, which controls the release of RNAPII from promoter-proximal pausing. Here, we analyze the events taking place in hESCs upstream of RNAPII release. We find that temperature stress results in the activation or decommissioning of thousands of enhancers. This process involves alterations in the occupancy of transcription factors HSF1, AP-1, NANOG, KLF4, and OCT4 accompanied by nucleosome remodeling by BRG1 and changes in H3K27ac. Furthermore, redistribution of RAD21 and CTCF results in the formation and disassembly of interactions mediated by these two proteins. These alterations tether and untether enhancers to their cognate promoters or refashion insulated neighborhoods, thus transforming the landscape of enhancer-promoter interactions. Details of the 3D interactome remodeling process support loop extrusion initiating at random sites as a mechanism for the establishment of CTCF/cohesin loops.


Sujet(s)
Régulation de l'expression des gènes/physiologie , Réaction de choc thermique/génétique , Cellules souches embryonnaires humaines/physiologie , Facteur de liaison à la séquence CCCTC , Protéines du cycle cellulaire , Lignée cellulaire , Immunoprécipitation de la chromatine , Protéines chromosomiques nonhistones , Helicase/génétique , Protéines de liaison à l'ADN , Gènes homéotiques , Température élevée , Cellules souches embryonnaires humaines/métabolisme , Humains , Facteur-4 de type Kruppel , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Phosphoprotéines/métabolisme , Cellules souches pluripotentes/physiologie , Régions promotrices (génétique) , Protéines/génétique , RNA polymerase II , Protéines de répression , Stress physiologique/physiologie , Température , Facteur de transcription AP-1 , Facteurs de transcription/génétique ,
12.
Mol Cell ; 67(5): 837-852.e7, 2017 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-28826674

RÉSUMÉ

Topologically associating domains (TADs), CTCF loop domains, and A/B compartments have been identified as important structural and functional components of 3D chromatin organization, yet the relationship between these features is not well understood. Using high-resolution Hi-C and HiChIP, we show that Drosophila chromatin is organized into domains we term compartmental domains that correspond precisely with A/B compartments at high resolution. We find that transcriptional state is a major predictor of Hi-C contact maps in several eukaryotes tested, including C. elegans and A. thaliana. Architectural proteins insulate compartmental domains by reducing interaction frequencies between neighboring regions in Drosophila, but CTCF loops do not play a distinct role in this organism. In mammals, compartmental domains exist alongside CTCF loop domains to form topological domains. The results suggest that compartmental domains are responsible for domain structure in all eukaryotes, with CTCF playing an important role in domain formation in mammals.


Sujet(s)
Assemblage et désassemblage de la chromatine , Chromatine/métabolisme , Protéines chromosomiques nonhistones/métabolisme , ADN/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Histone/métabolisme , Animaux , Arabidopsis/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/composition chimique , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Caenorhabditis elegans/génétique , Caenorhabditis elegans/métabolisme , Protéines de Caenorhabditis elegans/composition chimique , Protéines de Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans/métabolisme , Chromatine/composition chimique , Chromatine/génétique , Protéines chromosomiques nonhistones/composition chimique , Protéines chromosomiques nonhistones/génétique , Simulation numérique , ADN/composition chimique , ADN/génétique , ADN des plantes/composition chimique , ADN des plantes/génétique , ADN des plantes/métabolisme , Protéines de Drosophila/composition chimique , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Histone/composition chimique , Histone/génétique , Humains , Modèles biologiques , Conformation d'acide nucléique , Conformation des protéines , Relation structure-activité , Transcription génétique
13.
Cell Rep ; 18(6): 1366-1382, 2017 02 07.
Article de Anglais | MEDLINE | ID: mdl-28178516

RÉSUMÉ

The mammalian sperm genome is thought to lack substantial information for the regulation of future expression after fertilization. Here, we show that most promoters in mouse sperm are flanked by well-positioned nucleosomes marked by active histone modifications. Analysis of these modifications suggests that many enhancers and super-enhancers functional in embryonic and adult tissues are already specified in sperm. The sperm genome is bound by CTCF and cohesin at sites that are also present in round spermatids and embryonic stem cells (ESCs). These sites mediate interactions that organize the sperm genome into domains and compartments that overlap extensively with those found in mESCs. These results suggest that sperm carry a rich source of regulatory information, encoded in part by its three-dimensional folding specified by CTCF and cohesin. This information may contribute to future expression during embryonic and adult life, suggesting mechanisms by which environmental effects on the paternal germline are transmitted transgenerationally.


Sujet(s)
Chromatine/métabolisme , Cellules souches embryonnaires/métabolisme , Spermatozoïdes/métabolisme , Animaux , Sites de fixation/génétique , Protéines du cycle cellulaire/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Génome/génétique , Cellules germinales/métabolisme , Mâle , Souris , Nucléosomes/métabolisme , Régions promotrices (génétique)/génétique , Liaison aux protéines/génétique , Spermatides/métabolisme ,
14.
Nucleic Acids Res ; 45(4): 1714-1730, 2017 02 28.
Article de Anglais | MEDLINE | ID: mdl-27899590

RÉSUMÉ

Eukaryotic gene expression is regulated by enhancer-promoter interactions but the molecular mechanisms that govern specificity have remained elusive. Genome-wide studies utilizing STARR-seq identified two enhancer classes in Drosophila that interact with different core promoters: housekeeping enhancers (hkCP) and developmental enhancers (dCP). We hypothesized that the two enhancer classes are occupied by distinct architectural proteins, affecting their enhancer-promoter contacts. By evaluating ChIP-seq occupancy of architectural proteins, typical enhancer-associated proteins, and histone modifications, we determine that both enhancer classes are enriched for RNA Polymerase II, CBP, and architectural proteins but there are also distinctions. hkCP enhancers contain H3K4me3 and exclusively bind Cap-H2, Chromator, DREF and Z4, whereas dCP enhancers contain H3K4me1 and are more enriched for Rad21 and Fs(1)h-L. Additionally, we map the interactions of each enhancer class utilizing a Hi-C dataset with <1 kb resolution. Results suggest that hkCP enhancers are more likely to form multi-TSS interaction networks and be associated with topologically associating domain (TAD) borders, while dCP enhancers are more often bound to one or two TSSs and are enriched at chromatin loop anchors. The data support a model suggesting that the unique architectural protein occupancy within enhancers is one contributor to enhancer-promoter interaction specificity.


Sujet(s)
Chromatine/génétique , Chromatine/métabolisme , Protéines de liaison à l'ADN , Drosophila/génétique , Drosophila/métabolisme , Éléments activateurs (génétique) , Animaux , Marqueurs biologiques , Lignée cellulaire , Chromatine/composition chimique , Immunoprécipitation de la chromatine , Biologie informatique/méthodes , Séquençage nucléotidique à haut débit , Histone/métabolisme , Régions promotrices (génétique) , Liaison aux protéines
15.
Cell Stem Cell ; 18(5): 611-24, 2016 05 05.
Article de Anglais | MEDLINE | ID: mdl-27152443

RÉSUMÉ

Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression.


Sujet(s)
Reprogrammation cellulaire/génétique , Génome , Conformation d'acide nucléique , Animaux , Facteur de liaison à la séquence CCCTC , Lignage cellulaire/génétique , Chromatine/composition chimique , Clones cellulaires , Éléments activateurs (génétique)/génétique , Cellules souches pluripotentes induites/cytologie , Souris de lignée C57BL , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Liaison aux protéines , Protéines de répression/métabolisme
16.
Mol Cell ; 58(2): 216-31, 2015 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-25818644

RÉSUMÉ

Chromosomes of metazoan organisms are partitioned in the interphase nucleus into discrete topologically associating domains (TADs). Borders between TADs are formed in regions containing active genes and clusters of architectural protein binding sites. The transcription of most genes is repressed after temperature stress in Drosophila. Here we show that temperature stress induces relocalization of architectural proteins from TAD borders to inside TADs, and this is accompanied by a dramatic rearrangement in the 3D organization of the nucleus. TAD border strength declines, allowing for an increase in long-distance inter-TAD interactions. Similar but quantitatively weaker effects are observed upon inhibition of transcription or depletion of individual architectural proteins. Heat shock-induced inter-TAD interactions result in increased contacts among enhancers and promoters of silenced genes, which recruit Pc and form Pc bodies in the nucleolus. These results suggest that the TAD organization of metazoan genomes is plastic and can be reconfigured quickly.


Sujet(s)
Chromatine/génétique , Chromosomes/génétique , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Protéines du groupe Polycomb/métabolisme , Animaux , Lignée cellulaire , Protéines de Drosophila/composition chimique , Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Éléments activateurs (génétique) , Données de séquences moléculaires , Protéines du groupe Polycomb/composition chimique , Protéines du groupe Polycomb/génétique , Régions promotrices (génétique) , Séquences d'acides nucléiques régulatrices , Stress physiologique , Température
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...