Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Chem Neurosci ; 15(15): 2811-2821, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39058922

RÉSUMÉ

Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.


Sujet(s)
Animaux nouveau-nés , Encéphale , Hypoxie-ischémie du cerveau , Agents neuromédiateurs , Polyamines , Animaux , Hypoxie-ischémie du cerveau/métabolisme , Hypoxie-ischémie du cerveau/anatomopathologie , Polyamines/métabolisme , Encéphale/métabolisme , Agents neuromédiateurs/métabolisme , Rats , Rat Sprague-Dawley , Neurones/métabolisme , Métabolomique , Spectrométrie de masse MALDI/méthodes
2.
Anal Chem ; 96(10): 4163-4170, 2024 03 12.
Article de Anglais | MEDLINE | ID: mdl-38430121

RÉSUMÉ

Cyclosporin A (CycA) is a peptide secondary metabolite derived from fungi that plays a crucial role in transplantation surgery. Cyclic traveling wave ion mobility mass spectrometry (IM-MS) revealed an N → O peptidyl shift in singly protonated CycA to isocyclosporin A (isoA), whereas no such isomerization was observed for doubly protonated and sodiated molecules. CycA and isoA were able to be separated by considering doubly protonated precursors using a specific ion fragment. In parallel, sodium ion stabilization facilitated the simultaneous separation and quantitation of singly charged cyclosporin isomers with the limit of detection and coefficient of determination of 1.3% and 0.9908 for CycA in isoA and 1.0% and 0.9830 for isoA in CycA, respectively. Finally, 1H-13C gHSQC NMR experiments permitted parallel recording of up to 11 cyclosporin conformers. The ratios were determined by integrating the volume of cross-peaks of the upfield resonating hydrogen in the diastereotopic methylene group of sarcosine-3.


Sujet(s)
Ciclosporine , Cyclosporines , Peptides , Ciclosporine/composition chimique , Peptides/composition chimique , Ions , Isomérie
3.
Microorganisms ; 11(9)2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37764173

RÉSUMÉ

Pseudomonas aeruginosa is recognized as a significant cause of morbidity and mortality among nosocomial pathogens. In respiratory infections, P. aeruginosa acts not only as a single player but also collaborates with the opportunistic fungal pathogen Aspergillus fumigatus. This study introduced a QS molecule portfolio as a potential new biomarker that affects the secretion of virulence factors and biofilm formation. The quantitative levels of QS molecules, including 3-o-C12-HSL, 3-o-C8-HSL, C4-HSL, C6-HSL, HHQ, PQS, and PYO, measured using mass spectrometry in a monoculture, indicated metabolic changes during the transition from planktonic to sessile cells. In the co-cultures with A. fumigatus, the profile of abundant QS molecules was reduced to 3-o-C12-HSL, C4-HSL, PQS, and PYO. A decrease in C4-HSL by 50% to 170.6 ± 11.8 ng/mL and an increase 3-o-C12-HSL by 30% up to 784.4 ± 0.6 ng/mL were detected at the stage of the coverage of the hyphae with bacteria. Using scanning electron microscopy, we showed the morphological stages of the P. aeruginosa biofilm, such as cell aggregates, maturated biofilm, and cell dispersion. qPCR quantification of the genome equivalents of both microorganisms suggested that they exhibited an interplay strategy rather than antagonism. This is the first study demonstrating the quantitative growth-dependent appearance of QS molecule secretion in a monoculture of P. aeruginosa and a co-culture with A. fumigatus.

4.
Microorganisms ; 9(7)2021 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-34210064

RÉSUMÉ

The potential use of Bacillus velezensis FZB42 for biological control of various phytopathogens has been documented over the past few years, but its antagonistic interactions with xanthomonads has not been studied in detail. Novel aspects in this study consist of close observation of the death of Xanthomonas campestris pv. campestris cells in a co-culture with B. velezensis FZB42, and quantification of lipopeptides and a siderophore, bacillibactin, involved in the killing process. A new robust Xcc-SU isolate tolerating high concentrations of ferric ions was used. In a co-culture with the antagonist, the population of Xcc-SU was entirely destroyed within 24-48 h, depending on the number of antagonist cells used for inoculation. No inhibitory effect of Xcc-SU on B. velezensis was observed. Bacillibactin and lipopeptides (surfactin, fengycin, and bacillomycin) were present in the co-culture and the monoculture of B. velezensis. Except for bacillibactin, the maximum contents of lipopeptides were higher in the antagonist monoculture compared with the co-culture. Scanning electron microscopy showed that the death of Xcc-SU bacteria in co-culture was caused by cell lysis, leading to an enhanced occurrence of distorted cells and cell ghosts. Analysis by mass spectrometry showed four significant compounds, bacillibactin, surfactin, fengycin, and bacillomycin D amongst a total of 24 different forms detected in the co-culture supernatant: Different forms of surfactin and fengycin with variations in their side-chain length were also detected. These results demonstrate the ability of B. velezensis FZB42 to act as a potent antagonistic strain against Xcc.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE