Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Eur J Pharm Biopharm ; 189: 84-97, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37059402

RÉSUMÉ

The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.


Sujet(s)
Adjuvants immunologiques , Liposomes , Humains , Adjuvants immunologiques/pharmacologie , Poly I-C , Antigènes , Adjuvants pharmaceutiques , Vaccins sous-unitaires , Immunité
2.
Mol Pharm ; 20(2): 953-970, 2023 02 06.
Article de Anglais | MEDLINE | ID: mdl-36583936

RÉSUMÉ

Mucosal surfaces of the lungs represent a major site of entry for airborne pathogens, and pulmonary administration of vaccines is an attractive strategy to induce protective mucosal immunity in the airways. Recently, we demonstrated the potential of pulmonary vaccination with the tuberculosis subunit antigen H56 adjuvanted with the cationic liposomal adjuvant formulation CAF01, which consists of the cationic lipid dimethyldioctadecylammonium (DDA) bromide and the synthetic cord factor trehalose-6,6'-dibehenate. However, the cationic charge of DDA represents a major safety challenge. Hence, replacing DDA with a safer zwitterionic or anionic phospholipid is an attractive approach to improve vaccine safety, but the effect of liposomal surface charge on the induction of mucosal immunity after airway immunization is poorly understood. Here, we investigated the effect of surface charge by replacing the cationic DDA component of CAF01 with zwitterionic dipalmitoylphosphatidylcholine (DPPC) or anionic dipalmitoylphosphatidylglycerol (DPPG), and we show that charge modification enhances antigen-specific pulmonary T-cell responses against co-formulated H56. We systematically replaced DDA with either DPPC or DPPG and found that these modifications resulted in colloidally stable liposomes that have similar size and morphology to unmodified CAF01. DPPC- or DPPG-modified CAF01 displayed surface charge-dependent protein adsorption and induced slightly higher follicular helper T cells and germinal center B cells in the lung-draining lymph nodes than unmodified CAF01. In addition, modified CAF01 induced significantly higher levels of H56-specific Th17 cells and polyfunctional CD4+ T cells in the lungs, as compared to unmodified CAF01. However, the strong H56-specific humoral responses induced by CAF01 in the lungs and spleen were not influenced by surface charge. Hence, these results provide insights into the importance of surface charge for liposomal adjuvant function and can also guide the design of safe pulmonary subunit vaccines against other mucosal pathogens.


Sujet(s)
Adjuvants immunologiques , Liposomes , Animaux , Souris , Immunisation , Vaccination , Vaccins sous-unitaires , Adjuvants pharmaceutiques , Souris de lignée C57BL , Composés d'ammonium quaternaire
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...