Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.032
Filtrer
1.
Front Microbiol ; 15: 1415554, 2024.
Article de Anglais | MEDLINE | ID: mdl-38952446

RÉSUMÉ

Introduction: The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods: To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion: The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.

2.
EBioMedicine ; 105: 105212, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38954976

RÉSUMÉ

BACKGROUND: The E1A-associated protein p300 (p300) has emerged as a promising target for cancer therapy due to its crucial role in promoting oncogenic signaling pathways in various cancers, including prostate cancer. This need is particularly significant in prostate cancer. While androgen deprivation therapy (ADT) has demonstrated promising efficacy in prostate cancer, its long-term use can eventually lead to the development of castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC). Notably, p300 has been identified as an important co-activator of the androgen receptor (AR), highlighting its significance in prostate cancer progression. Moreover, recent studies have revealed the involvement of p300 in AR-independent oncogenes associated with NEPC. Therefore, the blockade of p300 may emerge as an effective therapeutic strategy to address the challenges posed by both CRPC and NEPC. METHODS: We employed AI-assisted design to develop a peptide-based PROTAC (proteolysis-targeting chimera) drug that targets p300, effectively degrading p300 in vitro and in vivo utilizing nano-selenium as a peptide drug delivery system. FINDINGS: Our p300-targeting peptide PROTAC drug demonstrated effective p300 degradation and cancer cell-killing capabilities in both CRPC, AR-negative, and NEPC cells. This study demonstrated the efficacy of a p300-targeting drug in NEPC cells. In both AR-positive and AR-negative mouse models, the p300 PROTAC drug showed potent p300 degradation and tumor suppression. INTERPRETATION: The design of peptide PROTAC drug targeting p300 is feasible and represents an efficient therapeutic strategy for CRPC, AR-negative prostate cancer, and NEPC. FUNDING: The funding details can be found in the Acknowledgements section.

3.
Science ; 385(6704): 68-74, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38963855

RÉSUMÉ

Passive radiant cooling is a potentially sustainable thermal management strategy amid escalating global climate change. However, petrochemical-derived cooling materials often face efficiency challenges owing to the absorption of sunlight. We present an intrinsic photoluminescent biomass aerogel, which has a visible light reflectance exceeding 100%, that yields a large cooling effect. We discovered that DNA and gelatin aggregation into an ordered layered aerogel achieves a solar-weighted reflectance of 104.0% in visible light regions through fluorescence and phosphorescence. The cooling effect can reduce ambient temperatures by 16.0°C under high solar irradiance. In addition, the aerogel, efficiently produced at scale through water-welding, displays high reparability, recyclability, and biodegradability, completing an environmentally conscious life cycle. This biomass photoluminescence material is another tool for designing next-generation sustainable cooling materials.

4.
Sci Rep ; 14(1): 15139, 2024 07 02.
Article de Anglais | MEDLINE | ID: mdl-38956423

RÉSUMÉ

Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner.


Sujet(s)
Minéraux , Oryza , Sol , Oryza/génétique , Oryza/métabolisme , Sol/composition chimique , Concentration en ions d'hydrogène , Minéraux/métabolisme , Minéraux/analyse , Contexte génétique , Grains comestibles/métabolisme , Grains comestibles/génétique
5.
Stem Cell Res ; 79: 103487, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38972232

RÉSUMÉ

CTNNB1 encodes beta-catenin, which plays a crucial role in Wnt signaling pathway. Mutations in CTNNB1 involve in tumor developing, Primary Aldosteronism, Neurodevelopmental disorders (NDDs), etc. NDDs is a class of disorders that impact brain development and function, manifesting symptom including autism spectrum disorder (ASD), intellectual disability (ID), schizophrenia (SCZ), and epilepsy. Here, we generated an iPSC line (CTUi005-A) from a patient diagnosed with NDDs, carrying a heterozygous mutation of the CTNNB1 gene. CTUi005-A exhibits typical iPSC characteristics, and holds potential as a cellular tool for investigating the pathogenic mechanisms underlying NDDs.

6.
Adv Sci (Weinh) ; : e2402450, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38952061

RÉSUMÉ

Discovering new treatments for melanoma will benefit human health. The mechanism by which deoxyhypusine synthase (DHPS) promotes melanoma development remains elucidated. Multi-omics studies have revealed that DHPS regulates m6A modification and maintains mRNA stability in melanoma cells. Mechanistically, DHPS activates the hypusination of eukaryotic translation initiation factor 5A (eIF5A) to assist METTL3 localizing on its mRNA for m6A modification, then promoting METTL3 expression. Structure-based design, synthesis, and activity screening yielded the hit compound GL-1 as a DHPS inhibitor. Notably, GL-1 directly inhibits DHPS binding to eIF5A, whereas GC-7 cannot. Based on the clarification of the mode of action of GL-1 on DHPS, it is found that GL-1 can promote the accumulation of intracellular Cu2+ to induce apoptosis, and antibody microarray analysis shows that GL-1 inhibits the expression of several cytokines. GL-1 shows promising antitumor activity with good bioavailability in a xenograft tumor model. These findings clarify the molecular mechanisms by which DHPS regulates melanoma proliferation and demonstrate the potential of GL-1 for clinical melanoma therapy.

7.
Front Public Health ; 12: 1366838, 2024.
Article de Anglais | MEDLINE | ID: mdl-38947357

RÉSUMÉ

Background: In recent years, the prevalence of obesity has continued to increase as a global health concern. Numerous epidemiological studies have confirmed the long-term effects of exposure to ambient air pollutant particulate matter 2.5 (PM2.5) on obesity, but their relationship remains ambiguous. Methods: Utilizing large-scale publicly available genome-wide association studies (GWAS), we conducted univariate and multivariate Mendelian randomization (MR) analyses to assess the causal effect of PM2.5 exposure on obesity and its related indicators. The primary outcome given for both univariate MR (UVMR) and multivariate MR (MVMR) is the estimation utilizing the inverse variance weighted (IVW) method. The weighted median, MR-Egger, and maximum likelihood techniques were employed for UVMR, while the MVMR-Lasso method was applied for MVMR in the supplementary analyses. In addition, we conducted a series of thorough sensitivity studies to determine the accuracy of our MR findings. Results: The UVMR analysis demonstrated a significant association between PM2.5 exposure and an increased risk of obesity, as indicated by the IVW model (odds ratio [OR]: 6.427; 95% confidence interval [CI]: 1.881-21.968; P FDR = 0.005). Additionally, PM2.5 concentrations were positively associated with fat distribution metrics, including visceral adipose tissue (VAT) (OR: 1.861; 95% CI: 1.244-2.776; P FDR = 0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092-5.855; PFDR =1.28E-05), and abdominal subcutaneous adipose tissue (ASAT) volume (OR: 1.773; 95% CI: 1.106-2.841; P FDR = 0.019). Furthermore, PM2.5 exposure correlated positively with markers of glucose and lipid metabolism, specifically triglycerides (TG) (OR: 19.959; 95% CI: 1.269-3.022; P FDR = 0.004) and glycated hemoglobin (HbA1c) (OR: 2.462; 95% CI: 1.34-4.649; P FDR = 0.007). Finally, a significant negative association was observed between PM2.5 concentrations and levels of the novel obesity-related biomarker fibroblast growth factor 21 (FGF-21) (OR: 0.148; 95% CI: 0.025-0.89; P FDR = 0.037). After adjusting for confounding factors, including external smoke exposure, physical activity, educational attainment (EA), participation in sports clubs or gym leisure activities, and Townsend deprivation index at recruitment (TDI), the MVMR analysis revealed that PM2.5 levels maintained significant associations with pancreatic fat, HbA1c, and FGF-21. Conclusion: Our MR study demonstrates conclusively that higher PM2.5 concentrations are associated with an increased risk of obesity-related indicators such as pancreatic fat content, HbA1c, and FGF-21. The potential mechanisms require additional investigation.


Sujet(s)
Étude d'association pangénomique , Analyse de randomisation mendélienne , Obésité , Matière particulaire , , Humains , Obésité/génétique , /génétique , Polluants atmosphériques/effets indésirables , Exposition environnementale/effets indésirables , Pollution de l'air/effets indésirables
8.
Front Endocrinol (Lausanne) ; 15: 1413690, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948521

RÉSUMÉ

Objectives: The relationship between adiposity and sepsis has received increasing attention. This study aims to explore the causal relationship between life course adiposity and the sepsis incidence. Methods: Mendelian randomization (MR) method was employed in this study. Instrumental variants were obtained from genome-wide association studies for life course adiposity, including birth weight, childhood body mass index (BMI), childhood obesity, adult BMI, waist circumference, visceral adiposity, and body fat percentage. A meta-analysis of genome-wide association studies for sepsis including 10,154 cases and 454,764 controls was used in this study. MR analyses were performed using inverse variance weighted, MR Egger regression, weighted median, weighted mode, and simple mode. Instrumental variables were identified as significant single nucleotide polymorphisms at the genome-wide significance level (P < 5×10-8). The sensitivity analysis was conducted to assess the reliability of the MR estimates. Results: Analysis using the MR analysis of inverse variance weighted method revealed that genetic predisposition to increased childhood BMI (OR = 1.29, P = 0.003), childhood obesity (OR = 1.07, P = 0.034), adult BMI (OR = 1.38, P < 0.001), adult waist circumference (OR = 1.01, P = 0.028), and adult visceral adiposity (OR = 1.53, P < 0.001) predicted a higher risk of sepsis. Sensitivity analysis did not identify any bias in the MR results. Conclusion: The results demonstrated that adiposity in childhood and adults had causal effects on sepsis incidence. However, more well-designed studies are still needed to validate their association.


Sujet(s)
Adiposité , Indice de masse corporelle , Étude d'association pangénomique , Analyse de randomisation mendélienne , Polymorphisme de nucléotide simple , Sepsie , Humains , Adiposité/génétique , Sepsie/génétique , Sepsie/épidémiologie , Prédisposition génétique à une maladie , Obésité pédiatrique/génétique , Obésité pédiatrique/épidémiologie , Obésité pédiatrique/complications , Adulte , Tour de taille , Enfant , Mâle , Femelle
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38829799

RÉSUMÉ

Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.


Sujet(s)
Acclimatation , Basse température , Animaux , Rats , Acclimatation/génétique , Chine , Phénotype , Variation génétique , Adaptation physiologique/génétique , Régulation de la température corporelle/génétique , Changement climatique
10.
J Med Chem ; 67(12): 10336-10349, 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38836467

RÉSUMÉ

While large-scale artificial intelligence (AI) models for protein structure prediction and design are advancing rapidly, the translation of deep learning models for practical macromolecular drug development remains limited. This investigation aims to bridge this gap by combining cutting-edge methodologies to create a novel peptide-based PROTAC drug development paradigm. Using ProteinMPNN and RFdiffusion, we identified binding peptides for androgen receptor (AR) and Von Hippel-Lindau (VHL), followed by computational modeling with Alphafold2-multimer and ZDOCK to predict spatial interrelationships. Experimental validation confirmed the designed peptide's binding ability to AR and VHL. Transdermal microneedle patching technology was seamlessly integrated for the peptide PROTAC drug delivery in androgenic alopecia treatment. In summary, our approach provides a generic method for generating peptide PROTACs and offers a practical application for designing potential therapeutic drugs for androgenetic alopecia. This showcases the potential of interdisciplinary approaches in advancing drug development and personalized medicine.


Sujet(s)
Alopécie , Conception de médicament , Peptides , Récepteurs aux androgènes , Alopécie/traitement médicamenteux , Récepteurs aux androgènes/métabolisme , Récepteurs aux androgènes/composition chimique , Humains , Peptides/composition chimique , Peptides/pharmacologie , Peptides/usage thérapeutique , Animaux , Protéine Von Hippel-Lindau supresseur de tumeur/métabolisme , Protéine Von Hippel-Lindau supresseur de tumeur/composition chimique , Mâle
11.
Acta Pharmacol Sin ; 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38914676

RÉSUMÉ

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

12.
Forensic Sci Int ; 361: 112071, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38870577

RÉSUMÉ

AIM: To identify mtDNA and OGG1 as potential biomarker candidates for mechanical asphyxia. METHOD: The human tissues are divided into experimental group (hanging and strangulation) and control groups (hemorrhagic shock, brain injury group, and poisoning group). Detected the expression of OGG1 and integrity of mtDNA in cardiac tissue of each group. We used over-OGG1 vector and siRNA-OGG1 transfecting H9C2 cell line to observe the function of OGG1 in hypoxic cells. RESULTS: 1. mtDNA integrity decreased in the mechanical asphyxia group, OGG1 expression increased in mechanical asphyxia groups. They can be biomarkers for mechanical asphyxia. 2. OGG1 increased first and decreased in hypoxia-induced H9C2 cells. OGG1 upregulated the TFAM, NRF1, and Bcl2 in hypoxia-induced H9C2. OGG1 downregulated cleaved-Caspase3 in hypoxia-induced H9C2 cells. 3. In the normoxia condition, NAC maintained mtDNA integrity and decreased the mitochondrial membrane potential and amount of ATP. CONCLUSION: mtDNA integrity and OGG1 expression can be biomarkers for mechanical asphyxia. OGG1 can maintain mtDNA integrity and maintain the stability of the mitochondrial membrane.

13.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38832852

RÉSUMÉ

Electromagnetic ultrasonic detection technology utilizes the electromagnetic coupling method to generate and receive ultrasonic waves without a couplant, which is suitable for rapid detection. However, the detection can be affected by the spatial distribution of the acoustic field and the polarization direction of the shear wave, which can result in suboptimal detection performance. The acoustic field directivity of the shear wave generated by the butterfly coil electromagnetic acoustic transducer was measured using the transmission method. The data indicate that the acoustic pressure amplitude of the shear wave is maximized along the axis of the acoustic field, thereby meeting the requirements of synthetic aperture focusing technique imaging. We used the reflection method to detect the through-hole defects and investigated the effect of shear wave polarization direction. By comparing the experimental data and imaging results, it can be concluded that higher echo amplitudes are obtained when the polarization direction of the shear wave is perpendicular to the axis of the through-hole defects. Based on the explosive reflection model, the frequency domain phase shift migration (PSM) method converts the time-domain signal to the frequency domain for processing and uses a phase-shift factor for layer-by-layer imaging. We used the PSM method to process the experimental data, which not only produced high-resolution images but also had a high computational speed.

14.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38877396

RÉSUMÉ

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Sujet(s)
Mort cellulaire , Résistance à la maladie , Maladies des plantes , Facteur de croissance végétal , Transcriptome , Triticum , Triticum/génétique , Triticum/microbiologie , Triticum/métabolisme , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Facteur de croissance végétal/métabolisme , Gibbérellines/métabolisme , Cytokinine/métabolisme , Analyse de profil d'expression de gènes , Métabolomique , Régulation de l'expression des gènes végétaux
15.
Cell Syst ; 15(6): 483-487, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38901402

RÉSUMÉ

This Voices piece will highlight the impact of artificial intelligence on algorithm development among computational biologists. How has worldwide focus on AI changed the path of research in computational biology? What is the impact on the algorithmic biology research community?


Sujet(s)
Algorithmes , Intelligence artificielle , Biologie informatique , Intelligence artificielle/tendances , Biologie informatique/méthodes , Humains
16.
Heliyon ; 10(10): e31518, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38826714

RÉSUMÉ

Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.

17.
Sci Prog ; 107(2): 368504241260268, 2024.
Article de Anglais | MEDLINE | ID: mdl-38836302

RÉSUMÉ

The bearing and deformation characteristics of monopile foundation under the monotonic and cyclic loads are key factors to consider in the design of the transmission tower structure or offshore wind energy converters. The model tests and numerical simulations of monopile foundation under monotonic and cyclic horizontal loads were performed in sand to explore the bearing characteristics and the deformation characteristics of pile. The potentially affected factors including loading height, relative density of soil, displacement amplitude were analyzed. The results show that with the loading height varies from 1D to 4D, the horizontal static bearing capacity of the pile under different the soil relative density decreased by 1.63-1.9 times, and the peak bending moment increased by 22.9%-36.8%. Under the cyclic loads, the peak load on the pile top increased by 31.7%-56.1% for each 1 mm increase in displacement amplitude. The stiffness of soil around pile varies as the number of cycles increases with the development trend of decreases first and then increases gradually. As the horizontal load and cycle number increase, the range of the displacement of soil extends towards the bottom of pile, until it covers the entire lower part of the model.

18.
Popul Health Metr ; 22(1): 10, 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38831424

RÉSUMÉ

BACKGROUND: There are significant geographic inequities in COVID-19 case fatality rates (CFRs), and comprehensive understanding its country-level determinants in a global perspective is necessary. This study aims to quantify the country-specific risk of COVID-19 CFR and propose tailored response strategies, including vaccination strategies, in 156 countries. METHODS: Cross-temporal and cross-country variations in COVID-19 CFR was identified using extreme gradient boosting (XGBoost) including 35 factors from seven dimensions in 156 countries from 28 January, 2020 to 31 January, 2022. SHapley Additive exPlanations (SHAP) was used to further clarify the clustering of countries by the key factors driving CFR and the effect of concurrent risk factors for each country. Increases in vaccination rates was simulated to illustrate the reduction of CFR in different classes of countries. FINDINGS: Overall COVID-19 CFRs varied across countries from 28 Jan 2020 to 31 Jan 31 2022, ranging from 68 to 6373 per 100,000 population. During the COVID-19 pandemic, the determinants of CFRs first changed from health conditions to universal health coverage, and then to a multifactorial mixed effect dominated by vaccination. In the Omicron period, countries were divided into five classes according to risk determinants. Low vaccination-driven class (70 countries) mainly distributed in sub-Saharan Africa and Latin America, and include the majority of low-income countries (95.7%) with many concurrent risk factors. Aging-driven class (26 countries) mainly distributed in high-income European countries. High disease burden-driven class (32 countries) mainly distributed in Asia and North America. Low GDP-driven class (14 countries) are scattered across continents. Simulating a 5% increase in vaccination rate resulted in CFR reductions of 31.2% and 15.0% for the low vaccination-driven class and the high disease burden-driven class, respectively, with greater CFR reductions for countries with high overall risk (SHAP value > 0.1), but only 3.1% for the ageing-driven class. CONCLUSIONS: Evidence from this study suggests that geographic inequities in COVID-19 CFR is jointly determined by key and concurrent risks, and achieving a decreasing COVID-19 CFR requires more than increasing vaccination coverage, but rather targeted intervention strategies based on country-specific risks.


Sujet(s)
COVID-19 , Santé mondiale , Apprentissage machine , SARS-CoV-2 , Humains , COVID-19/mortalité , Facteurs de risque , Pandémies , Vaccins contre la COVID-19 , Vaccination
19.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38902625

RÉSUMÉ

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Sujet(s)
Aegilops , Graines , Triticum , Triticum/génétique , Triticum/métabolisme , Aegilops/génétique , Aegilops/métabolisme , Graines/génétique , Graines/métabolisme , Hybridation génétique , Polyploïdie , Amidon/biosynthèse , Amidon/métabolisme , Transcriptome , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Protéomique/méthodes , Multi-omique
20.
MycoKeys ; 105: 317-336, 2024.
Article de Anglais | MEDLINE | ID: mdl-38863446

RÉSUMÉ

Neohelicomyces species are a group of helicosporous hyphomycetes with the potential to produce secondary metabolites. During our investigation of helicosporous fungi, six collections were isolated from both terrestrial and freshwater habitats in Guizhou Province, China. Based on multigene phylogenetic analysis (ITS, LSU, tef1α and rpb2), coupled with morphological data, three new Neohelicomyces species, viz. N.guizhouensis, N.helicosporus and N.hydei were established. A list of accepted Neohelicomyces species with molecular data was provided. The strain of Neohelicomycespallidus (UAMH 10535) was synonymised under N.denticulatus based on molecular data.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...