Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 367
Filtrer
1.
Environ Sci Technol ; 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38916402

RÉSUMÉ

Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 µg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 µg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.

2.
Bioresour Technol ; 406: 131016, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38906195

RÉSUMÉ

The salt-tolerant microalgae are extremely few and salt-tolerance mechanism is unclear, requiring urgent exploration of salt-tolerance mechanism of known microalgae. This study was first to reveal the salt-tolerance mechanism of Golenkinia sp. SDEC-16 by investigating the growth and metabolism under different salinities and high salinity long-term cultivation. SDEC-16 can survive under high salinity and resume normal growth after NaCl removal. Under long-term stress, SDEC-16 had higher lipid content and productivity than BG11. However, the suppressed Fv/Fm (58.4%) and Fv/F0 (84.0%) along with the increased reactive oxygen species (×6.6), and superoxide dismutase (×1.7) during the treatment revealed NaCl-induced photosynthetic inhibition and oxidative stress. RNA sequencing results showed inhibition of the photosynthetic system, and the enhancement of pathways such as nitrogen metabolism, energy metabolism, and lipid synthesis contributed to the good function of chloroplast, energy supply, and metabolic activity of SDEC-16. This study provides theoretical support for large-scale microalgal cultivation in seawater.

3.
Carbohydr Polym ; 341: 122347, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38876717

RÉSUMÉ

While the extensive utilization of disposable plastic straws has resulted in significant environmental issues such as microplastics and soil and ocean pollution, the quest for alternative straws for versatile use remains a formidable challenge. Here, drawing inspiration from naturally water-resistant materials such as bones and sea urchins, we have developed seaweed-based straws with significantly improved water resistance and mechanical strength via in-situ mineralization of CaCO3 on their surfaces. Specifically, the COO- groups on the G (α-L-guluronate) blocks of alginate were employed to establish a robust cross-linked network, while the COO- groups on the M (ß-D-mannuronate) blocks attracted free Ca2+ through electrostatic forces, thereby promoting CaCO3 nucleation. This effectively prevents COOH groups from hydrating, reducing swelling, and results in the fabrication of nano- to micron-sized CaCO3 particles that reinforce the structure without compromising the cross-linked network. Compared with the control group, the S5% sample (prepared with 5 % Na2CO3 solution) exhibited a 102 % increase in water contact angle, a 35 % decrease in swelling degree, and a 35.5 % and 37.5 % increase in ultimate flexural and tensile stress, respectively. Furthermore, the potential use of these straws as a waste for heavy metal adsorption was investigated, addressing environmental concerns while demonstrating economic feasibility.


Sujet(s)
Carbonate de calcium , Algue marine , Carbonate de calcium/composition chimique , Algue marine/composition chimique , Résistance à la traction , Alginates/composition chimique , Propriétés de surface , Eau/composition chimique
4.
Front Pharmacol ; 15: 1374158, 2024.
Article de Anglais | MEDLINE | ID: mdl-38887554

RÉSUMÉ

Nonalcoholic fatty liver disease (NAFLD) is marked by hepatic steatosis accompanied by an inflammatory response. At present, there are no approved therapeutic agents for NAFLD. Dendrobium Huoshanense polysaccharide (DHP), an active ingredient extracted from the stems of Dendrobium Huoshanense, and exerts a protective effect against liver injury. However, the therapeutic effects and mechanisms of action DHP against NAFLD remain unclear. DHP was extracted, characterized, and administered to mice in which NAFLD had been induced with a high-fat and high-fructose drinking (HFHF) diet. Our results showed that DHP used in this research exhibits the characteristic polysaccharide peak with a molecular weight of 179.935 kDa and is composed primarily of Man and Glc in a molar ratio of 68.97:31.03. DHP treatment greatly ameliorated NAFLD by significantly reducing lipid accumulation and the levels of liver function markers in HFHF-induced NAFLD mice, as evidenced by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC) and total triglyceride (TG). Furthermore, DHP administration reduced hepatic steatosis, as shown by H&E and Oil red O staining. DHP also inhibited the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway expression, thereby reducing levels of hepatic proinflammatory cytokines. Besides, untargeted metabolomics further indicated that 49 metabolites were affected by DHP. These metabolites are strongly associated the metabolism of glycine, serine, threonine, nicotinate and nicotinamide, and arachidonic acid. In conclusion, DHP has a therapeutic effect against NAFLD, whose underlying mechanism may involve the modulation of TLR4/NF-κB, reduction of inflammation, and regulation of the metabolism of glycine, serine, threonine, nicotinate and nicotinamide metabolism, and arachidonic acid metabolism.

5.
Dev Biol ; 514: 28-36, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38880277

RÉSUMÉ

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.

6.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-38723197

RÉSUMÉ

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Sujet(s)
Évolution de la maladie , Homéostasie , Methylenetetrahydrofolate Dehydrogenase (NADP) , Stress oxydatif , Tumeurs de l'estomac , Animaux , Humains , Souris , Aminohydrolases/métabolisme , Aminohydrolases/génétique , Lignée cellulaire tumorale , Methylenetetrahydrofolate Dehydrogenase (NADP)/métabolisme , Methylenetetrahydrofolate Dehydrogenase (NADP)/génétique , Enzymes multifonctionnelles/métabolisme , Enzymes multifonctionnelles/génétique , Oxydoréduction , Espèces réactives de l'oxygène/métabolisme , Tumeurs de l'estomac/métabolisme , Tumeurs de l'estomac/anatomopathologie , Tumeurs de l'estomac/génétique , Tests d'activité antitumorale sur modèle de xénogreffe
7.
Brain Res ; 1838: 148991, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38754803

RÉSUMÉ

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Sujet(s)
Anticonvulsivants , Épilepsie , Vigabatrine , Voie de signalisation Wnt , Animaux , Anticonvulsivants/pharmacologie , Vigabatrine/pharmacologie , Rats , Mâle , Épilepsie/traitement médicamenteux , Épilepsie/induit chimiquement , Stéréoisomérie , Voie de signalisation Wnt/effets des médicaments et des substances chimiques , Acide kaïnique/toxicité , Rat Sprague-Dawley , Crises épileptiques/induit chimiquement , Crises épileptiques/traitement médicamenteux , Hippocampe/effets des médicaments et des substances chimiques , Hippocampe/métabolisme , Plasticité neuronale/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Neuroprotecteurs/pharmacologie , Glycogen synthase kinase 3 beta/métabolisme
8.
J Environ Manage ; 360: 121097, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38733844

RÉSUMÉ

With high-frequency data of nitrate (NO3-N) concentrations in waters becoming increasingly important for understanding of watershed system behaviors and ecosystem managements, the accurate and economic acquisition of high-frequency NO3-N concentration data has become a key point. This study attempted to use coupled deep learning neural networks and routine monitored data to predict hourly NO3-N concentrations in a river. The hourly NO3-N concentration at the outlet of the Oyster River watershed in New Hampshire, USA, was predicted through neural networks with a hybrid model architecture coupling the Convolutional Neural Networks and the Long Short-Term Memory model (CNN-LSTM). The routine monitored data (the river depth, water temperature, air temperature, precipitation, specific conductivity, pH and dissolved oxygen concentrations) for model training were collected from a nested high-frequency monitoring network, while the high-frequency NO3-N concentration data obtained at the outlet were not included as inputs. The whole dataset was separated into training, validation, and testing processes according to the ratio of 5:3:2, respectively. The hybrid CNN-LSTM model with different input lengths (1d, 3d, 7d, 15d, 30d) displayed comparable even better performance than other studies with lower frequencies, showing mean values of the Nash-Sutcliffe Efficiency 0.60-0.83. Models with shorter input lengths demonstrated both the higher modeling accuracy and stability. The water level, water temperature and pH values at monitoring sites were main controlling factors for forecasting performances. This study provided a new insight of using deep learning networks with a coupled architecture and routine monitored data for high-frequency riverine NO3-N concentration forecasting and suggestions about strategies about variable and input length selection during preprocessing of input data.


Sujet(s)
Apprentissage profond , , Nitrates , Rivières , Nitrates/analyse , Rivières/composition chimique , Surveillance de l'environnement/méthodes , Polluants chimiques de l'eau/analyse , New Hampshire
9.
Front Endocrinol (Lausanne) ; 15: 1364285, 2024.
Article de Anglais | MEDLINE | ID: mdl-38812814

RÉSUMÉ

Introduction: Although the effectiveness of pentoxifylline (PF) as a selective inhibitor of phosphodiesterase to enhance sperm motility through increasing cyclic nucleotide in cases of absolute asthenozoospermia has been demonstrated for ICSI, data related to babies born from the PF-ICSI are still severely lacking. Concerns have been raised regarding the potential embryotoxicity of PF due to the controversial results obtained from the analysis of this compound on animal embryo development. This study aimed to determine whether the application of PF to trigger frozen-thawed TESA (testicular sperm aspiration) spermatozoa increases the risk of adverse obstetric and neonatal outcomes compared with non-PF frozen-thawed TESA ICSI and conventional ICSI using fresh ejaculation. Materials and methods: A total of 5438 patients were analyzed in this study, including 240 patients underwent PF-TESA ICSI (ICSI using PF triggered frozen-thawed testicular spermatozoa), 101 patients underwent non-PF TESA ICSI (ICSI using frozen-thawed testicular spermatozoa) and 5097 patients underwent conventional ICSI using fresh ejaculation. Propensity score matching was executed to control the various characteristics of patients. Results: No significant differences in pregnancy outcomes were observed among the three groups (PF-TESA ICSI, non-PF TESA ICSI and conventional ICSI), including biochemical pregnancy, clinical pregnancy, implantation, miscarriage, ectopic pregnancy, multiple pregnancy, and live birth, following propensity score matching. Additionally, neonatal outcomes were found to be similar among the three groups, with no statistical differences observed in the birth defect, birth weight, gestational age, preterm birth, and early-neonatal death. Discussion and conclusion: PF-ICSI may be an alternative treatment in patients using frozen-thawed testicular spermatozoa, resulting in comparable pregnancy and neonatal outcomes.


Sujet(s)
Cryoconservation , Pentoxifylline , Issue de la grossesse , Injections intracytoplasmiques de spermatozoïdes , Spermatozoïdes , Humains , Pentoxifylline/usage thérapeutique , Grossesse , Femelle , Mâle , Injections intracytoplasmiques de spermatozoïdes/méthodes , Adulte , Spermatozoïdes/effets des médicaments et des substances chimiques , Cryoconservation/méthodes , Nouveau-né , Taux de grossesse , Prélèvement de sperme , Études rétrospectives , Conservation de semence/méthodes
10.
Carcinogenesis ; 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38742453

RÉSUMÉ

Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been implicated in several tumors. UCA1 promotes cell proliferation, migration and invasion of GC cells, but the molecular mechanism has not been fully elucidated. This study revealed the oncogenic effects of UCA1 on cell growth and invasion. Furthermore, UCA1 expression was significantly correlated with the overall survival of GC patients, and the clinicopathological indicators, including tumor size, depth of invasion, lymph node metastasis, and TNM stage. Additionally, miR-1-3p was identified as a downstream target of UCA1, which was negatively regulated by UCA1. MiR-1-3p inhibited cell proliferation and vasculogenic mimicry (VM), and induced cell apoptosis by upregulating BAX, BAD, and tumor suppressor TP53 expression levels. Moreover, miR-1-3p almost completely reversed the oncogenic effect caused by UCA1, including cell growth, migration and VM formation. This study also confirmed UCA1 promoted tumor growth in vivo. In this study, we also revealed the correlation between UCA1 and VM formation, which is potentially crucial for tumor metastasis. Meanwhile, its downstream target miR-1-3p inhibited VM formation in GC cells. In summary, these findings indicate that UCA1/miR-1-3p axis is potential target for GC treatment.

11.
Plant Biotechnol J ; 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38783571

RÉSUMÉ

Increasing crop yield depends on selecting and utilizing pleiotropic genes/alleles to improve multiple yield-related traits (YRTs) during crop breeding. However, synergistic improvement of YRTs is challenging due to the trade-offs between YRTs in breeding practices. Here, the favourable haplotypes of the TaCYP78A family are identified by analysing allelic variations in 1571 wheat accessions worldwide, demonstrating the selection and utilization of pleiotropic genes to improve yield and related traits during wheat breeding. The TaCYP78A family members, including TaCYP78A3, TaCYP78A5, TaCYP78A16, and TaCYP78A17, are organ size regulators expressed in multiple organs, and their allelic variations associated with various YRTs. However, due to the trade-offs between YRTs, knockdown or overexpression of TaCYP78A family members does not directly increase yield. Favourable haplotypes of the TaCYP78A family, namely A3/5/16/17Ap-Hap II, optimize the expression levels of TaCYP78A3/5/16/17-A across different wheat organs to overcome trade-offs and improve multiple YRTs. Different favourable haplotypes have both complementary and specific functions in improving YRTs, and their aggregation in cultivars under strong artificial selection greatly increase yield, even under various planting environments and densities. These findings provide new support and valuable genetic resources for molecular breeding of wheat and other crops in the era of Breeding 4.0.

12.
Foods ; 13(10)2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38790808

RÉSUMÉ

α-Dicarbonyl compounds (α-DCs) are commonly present in various foods. We conducted the investigation into concentration changes of α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in fresh fruits and decapped commercial juices during storage at room temperature and 4 °C, as well as in homemade juices during storage at 4 °C. The studies indicate the presence of α-DCs in all samples. The initial contents of 3-DG in the commercial juices (6.74 to 65.61 µg/mL) are higher than those in the homemade ones (1.97 to 4.65 µg/mL) as well as fruits (1.58 to 3.33 µg/g). The initial concentrations of GO and MGO are normally less than 1 µg/mL in all samples. During storage, the α-DC levels in the fruits exhibit an initial increase followed by a subsequent decrease, whereas, in all juices, they tend to accumulate continuously over time. As expected, 4 °C storage reduces the increase rates of the α-DC concentrations in most samples. From the viewpoint of the α-DC contents, fruits and homemade juices should always be the first choice for daily intake of nutrients and commercial juices ought to be mostly avoided.

13.
bioRxiv ; 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38712275

RÉSUMÉ

Primordial germ cells (PGCs) are the precursors of sperms and oocytes. Proper development of PGCs is crucial for the survival of the species. In many organisms, factors responsible for PGC development are synthesized during early oogenesis and assembled into the germ plasm. During early embryonic development, germ plasm is inherited by a few cells, leading to the formation of PGCs. While germline development has been extensively studied, how components of the germ plasm regulate PGC development is not fully understood. Here, we report that Dzip1 is dynamically expressed in vertebrate germline and is a novel component of the germ plasm in Xenopus and zebrafish. Knockdown of Dzip1 impairs PGC development in Xenopus embryos. At the molecular level, Dzip1 physically interacts with Dazl, an evolutionarily conserved RNA-binding protein that plays a multifaced role during germline development. We further showed that the sequence between amino acid residues 282 and 550 of Dzip1 is responsible for binding to Dazl. Disruption of the binding between Dzip1 and Dazl leads to defective PGC development. Taken together, our results presented here demonstrate that Dzip1 is dynamically expressed in the vertebrate germline and plays a novel function during Xenopus PGC development.

14.
Elife ; 132024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38573307

RÉSUMÉ

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Sujet(s)
Acrosome , Infertilité masculine , Animaux , Humains , Mâle , Souris , Protéines du cytosquelette/génétique , Protéines du cytosquelette/métabolisme , Infertilité masculine/génétique , Protéines membranaires/génétique , Sperme , Tête du spermatozoïde , Spermatozoïdes
15.
Plant J ; 118(6): 2154-2168, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38558071

RÉSUMÉ

Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine ß-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.


Sujet(s)
Ascomycota , Résistance à la maladie , Gossypium , Maladies des plantes , Protéines végétales , Gossypium/génétique , Gossypium/microbiologie , Gossypium/immunologie , Gossypium/métabolisme , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Maladies des plantes/immunologie , Maladies des plantes/génétique , Ascomycota/physiologie , Protéines végétales/génétique , Protéines végétales/métabolisme , Étude d'association pangénomique , Stimulation du métabolisme oxydatif , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/microbiologie , Arabidopsis/immunologie , Arabidopsis/métabolisme , Cystathionine beta-synthase/génétique , Cystathionine beta-synthase/métabolisme , Végétaux génétiquement modifiés , Verticillium
16.
Microorganisms ; 12(4)2024 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-38674620

RÉSUMÉ

Microalgae have great potential for remediating salt-affected soil. In this study, the microalgae species Coelastrella sp. SDEC-28, Dunaliella salina SDEC-36, and Spirulina subsalsa FACHB-351 were investigated for their potential to rehabilitate salt-affected soils. Nylon screens with optimal aperture sizes and layer numbers were identified to efficiently intercept and harvest biomass, suggesting a correlation between underflow capability and the tough cell walls, strong motility, and intertwining characteristics of the algae. Our investigations proved the feasibility of incorporating monosodium glutamate residue (MSGR) into soil extracts at dilution ratios of 1/200, 1/2000, and 1/500 to serve as the optimal medium for the three microalgae species, respectively. After one growth period of these three species, the electrical conductivities of the media decreased by 0.21, 1.18, and 1.78 mS/cm, respectively, and the pH remained stable at 7.7, 8.6, and 8.4. The hypotheses that microalgae can remediate soil and return profits have been verified through theoretical calculations, demonstrating the potential of employing specific microalgal strains to enhance soil conditions in eco-farms, thereby broadening the range of crops that can be cultivated, including those that are intolerant to saline-alkali environments.

17.
Bioresour Technol ; 400: 130691, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38599347

RÉSUMÉ

Indole acetic acid (IAA) as a plant hormone, was one of the valuable products of anaerobic fermentation. However, the enriching method remained unknown. Moreover, whether zero valent iron (ZVI) could enhance IAA production was unexplored. In this work, IAA producing bacteria Klebsiella (63 %) was enriched successfully. IAA average production rate and concentration were up to 3 mg/L/h and 56 mg/L. With addition of 1 g/L ZVI, IAA average production rate and concentration was increased for 2 and 3 folds. Mechanisms indicated ZVI increased Na+K+-ATP activity and electron transport activity for 2 folds and 1 fold. Moreover, macro transcription determined indole pyruvate pathway activity like primary-amine oxidase, indole pyruvate decarboxylase and aldehyde dehydrogenase were increased for 146 %, 187 %, and 557 %, respectively. Therefore, ZVI was suitable for enhancement IAA production from mixed culture anaerobic fermentation.


Sujet(s)
Fermentation , Acides indolacétiques , Fer , Tryptophane , Acides indolacétiques/métabolisme , Tryptophane/métabolisme , Anaérobiose , Fer/métabolisme , Klebsiella/métabolisme
18.
Sci Total Environ ; 931: 172567, 2024 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-38643871

RÉSUMÉ

Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.


Sujet(s)
Antioxydants , Chlorella , Microalgues , Stress oxydatif , Polyosides , Polyosides/pharmacologie , Polyosides/composition chimique , Stress oxydatif/effets des médicaments et des substances chimiques , Spirulina/composition chimique
20.
Virology ; 594: 110050, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38479071

RÉSUMÉ

The SARS-CoV-2 Omicron variant, which was classified as a variant of concern (VOC) by the World Health Organization on 26 November 2021, has attracted worldwide attention for its high transmissibility and immune evasion ability. The existing COVID-19 vaccine has been shown to be less effective in preventing Omicron variant infection and symptomatic infection, which brings new challenges to vaccine development and application. Here, we evaluated the immunogenicity and safety of an Omicron variant COVID-19 inactivated vaccine containing aluminum and CpG adjuvants in a variety of animal models. The results showed that the vaccine candidate could induce high levels of neutralizing antibodies against the Omicron variant virus and binding antibodies, and significantly promoted cellular immune response. Meanwhile, the vaccine candidate was safe. Therefore, it provided more foundation for the development of aluminum and CpG as a combination adjuvant in human vaccines.


Sujet(s)
Alun , Vaccins contre la COVID-19 , COVID-19 , Animaux , Humains , Aluminium , SARS-CoV-2 , COVID-19/prévention et contrôle , Adjuvants immunologiques , Immunité cellulaire , Anticorps neutralisants , Vaccins inactivés , Anticorps antiviraux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...