Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 275
Filtrer
1.
PLoS One ; 19(6): e0305284, 2024.
Article de Anglais | MEDLINE | ID: mdl-38843232

RÉSUMÉ

[This corrects the article DOI: 10.1371/journal.pone.0243652.].

2.
Gland Surg ; 13(5): 640-653, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38845837

RÉSUMÉ

Background: Breast-conserving surgery (BCS) stands as the favored modality for treating early-stage breast cancer. Accurately forecasting the feasibility of BCS preoperatively can aid in surgical planning and reduce the rate of switching of surgical methods and reoperation. The objective of this study is to identify the radiomics features and preoperative breast magnetic resonance imaging (MRI) characteristics that are linked with positive margins following BCS in patients with breast cancer, with the ultimate aim of creating a predictive model for the feasibility of BCS. Methods: This study included a cohort of 221 pretreatment MRI images obtained from patients with breast cancer. A total of seven MRI semantic features and 1,561 radiomics features of lesions were extracted. The feature subset was determined by eliminating redundancy and correlation based on the features of the training set. The least absolute shrinkage and selection operator (LASSO) logistic regression was then trained with this subset to classify the final BCS positive and negative margins and subsequently validated using the test set. Results: Seven features were significant in the discrimination of cases achieving positive and negative margins. The radiomics signature achieved area under the curve (AUC), accuracy, sensitivity, and specificity of 0.760 [95% confidence interval (CI): 0.630, 0.891], 0.712 (95% CI: 0.569, 0.829), 0.882 (95% CI: 0.623, 0.979) and 0.629 (95% CI: 0.449, 0.780) in the test set, respectively. The combined model of radiomics signature and background parenchymal enhancement (BPE) demonstrated an AUC, accuracy, sensitivity, and specificity of 0.759 (95% CI: 0.628, 0.890), 0.654 (95% CI: 0.509, 0.780), 0.679 (95% CI: 0.476, 0.834) and 0.625 (95% CI: 0.408, 0.804). Conclusions: The combination of preoperative MRI radiomics features can well predict the success of breast conserving surgery.

3.
MedComm (2020) ; 5(6): e586, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38832214

RÉSUMÉ

TP53 comutation is related to poor prognosis of non-small cell lung cancer. However, there is limited study focusing on the structural influence of TP53 mutation on third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treatment. We retrospectively analyzed the clinical and molecular data of patients treated with third-generation EGFR-TKIs in two independent cohorts. A total of 117 patients from the Sun Yat-sen University Cancer Center (SYSUCC) and 141 patients from the American Association for Cancer Research Project GENIE database were included. In the SYSUCC cohort, TP53 comutations were found in 59 patients (50.4%) and were associated with poor median progress-free survival (mPFS) and median overall survival (mOS). The additional subtype analysis found that TP53 mutation in the alpha-helix region had shorter mOS compared with those with TP53 mutations in other regions in the SYSUCC cohort (mOS, 12.2 vs. 21.7 months; p = 0.027). Similar findings were confirmed in the GENIE cohort. Specifically, the presence of TP53 mutation in the alpha-helix region was an independent negative predictive factor for PFS [hazard ratio (HR) 2.05(1.01-4.18), p = 0.048] and OS [HR 3.62(1.60-8.17), p = 0.002] in the SYSUCC cohort. TP53 mutation in alpha-helix region was related to inferior clinical outcomes in patients treated with third-generation EGFR-TKIs.

4.
J Immunother Cancer ; 12(6)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38871480

RÉSUMÉ

BACKGROUND: The sustained effectiveness of anti-programmed cell death protein-1/programmed death-ligand 1 treatment is limited to a subgroup of patients with advanced nasopharyngeal carcinoma (NPC), and the specific biomarker determining the response to immunotherapy in NPC remains uncertain. METHODS: We assessed the associations between pre-immunotherapy and post-immunotherapy serum lipoproteins and survival in a training cohort (N=160) and corroborated these findings in a validation cohort (N=100). Animal studies were performed to explore the underlying mechanisms. Additionally, the relationship between high-density lipoprotein-cholesterol (HDL-C) levels and M1/M2-like macrophages, as well as activated CD8+T cells in tumor tissues from patients with NPC who received immunotherapy, was investigated. RESULTS: The lipoproteins cholesterol, HDL-C, low-density lipoprotein-cholesterol, triglycerides, apolipoprotein A-1 (ApoA1), and apolipoprotein B, were significantly altered after immunotherapy. Patients with higher baseline HDL-C or ApoA1, or those with increased HDL-C or ApoA1 after immunotherapy had longer progression-free survival, a finding verified in the validation cohort (p<0.05). Multivariate analysis revealed that baseline HDL-C and elevated HDL-C post-immunotherapy were independent predictors of superior PFS (p<0.05). Furthermore, we discovered that L-4F, an ApoA1 mimetic, could inhibit tumor growth in NPC xenografts. This effect was associated with L-4F's ability to polarize M2-like macrophages towards an M1-like phenotype via the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65, thereby alleviating immunosuppression in the tumor microenvironment. Importantly, in patients with NPC with high plasma HDL-C levels, the number of M2-like macrophages was significantly decreased, while M1-like macrophages and activated CD8+T cells were notably increased in those with high HDL-C levels. CONCLUSION: Higher baseline HDL-C levels or an increase in HDL-C post-immunotherapy can enhance immunotherapeutic responses in patients with NPC by reprogramming M2-like macrophages towards the M1 phenotype. This suggests a potential role for prospectively exploring ApoA1 mimetics as adjuvant agents in combination with immunotherapy.


Sujet(s)
Cholestérol HDL , Immunothérapie , Cancer du nasopharynx , Macrophages associés aux tumeurs , Humains , Cancer du nasopharynx/immunologie , Cancer du nasopharynx/anatomopathologie , Cancer du nasopharynx/thérapie , Cancer du nasopharynx/traitement médicamenteux , Macrophages associés aux tumeurs/immunologie , Macrophages associés aux tumeurs/métabolisme , Immunothérapie/méthodes , Animaux , Femelle , Mâle , Cholestérol HDL/métabolisme , Cholestérol HDL/sang , Souris , Adulte d'âge moyen , Phénotype , Microenvironnement tumoral , Tumeurs du rhinopharynx/immunologie , Tumeurs du rhinopharynx/anatomopathologie , Tumeurs du rhinopharynx/thérapie , Tumeurs du rhinopharynx/traitement médicamenteux , Adulte
5.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38834117

RÉSUMÉ

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Sujet(s)
Metformine , Polyosides , Staphylococcus , Metformine/pharmacologie , Metformine/composition chimique , Animaux , Polyosides/pharmacologie , Polyosides/composition chimique , Staphylococcus/effets des médicaments et des substances chimiques , Souris , Astragalus/composition chimique , Mâle , Diabète expérimental/traitement médicamenteux , Hypoglycémiants/pharmacologie , Hypoglycémiants/composition chimique , Masse moléculaire
6.
Inorg Chem ; 63(26): 11924-11929, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38885631

RÉSUMÉ

All-inorganic halide perovskite semiconductors have received extensive attention due to their excellent photoelectronic conversion efficiency. Prior studies have reported on compounds CsPbBr3 and CsPbCl3. However, the transition phases between them have not been systematically studied. Here, a series of large-size single crystals of CsPbBrxCl3-x (x = 0-3) were successfully grown by the Bridgman method, which proves that the Br and Cl atoms can be miscible in any proportion in the solid solution system, and the change of lattice parameters conforms to Vegard's law. Also, the bandgap and light emission were studied. It is found that the band gap (2.90-2.29 eV) and photoluminescence characteristics (from blue light to green light) can be effectively tuned by adjusting the content of the Br atom. These results provide valuable guidance for the development and optimization of photoelectronic semiconductors that can meet different practical demands.

7.
Blood ; 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38805639

RÉSUMÉ

Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols reliant on culture. However, the kinetics and mechanisms by which this occurs remain incompletely characterized. Here, through time-resolved scRNA-Seq, matched in vivo functional analysis and the use of a reversible in vitro system of early G1 arrest, we define the sequence of transcriptional and functional events occurring during the first ex vivo division of human LT-HSCs. We demonstrate that the sharpest loss of LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limiting global variability in gene expression and transiently upregulating gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programmes in culture. However, contrary to current assumptions, we demonstrate that loss of HSC function ex vivo is independent of cell cycle progression. Finally, we show that targeting LT-HSC adaptation to culture by inhibiting early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrates that controlling early LT-HSC adaptation to ex vivo culture, for example via JAK inhibition, is of critical importance to improve HSC gene therapy and expansion protocols.

8.
Acad Radiol ; 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38693025

RÉSUMÉ

RATIONALE AND OBJECTIVES: Peritoneal recurrence is the predominant pattern of recurrence in advanced ovarian cancer (AOC) and portends a dismal prognosis. Accurate prediction of peritoneal recurrence and disease-free survival (DFS) is crucial to identify patients who might benefit from intensive treatment. We aimed to develop a predictive model for peritoneal recurrence and prognosis in AOC. METHODS: In this retrospective multi-institution study of 515 patients, an end-to-end multi-task convolutional neural network (MCNN) comprising a segmentation convolutional neural network (CNN) and a classification CNN was developed and tested using preoperative CT images, and MCNN-score was generated to indicate the peritoneal recurrence and DFS status in patients with AOC. We evaluated the accuracy of the model for automatic segmentation and predict prognosis. RESULTS: The MCNN achieved promising segmentation performances with a mean Dice coefficient of 84.3% (range: 78.8%-87.0%). The MCNN was able to predict peritoneal recurrence in the training (AUC 0.87; 95% CI 0.82-0.90), internal test (0.88; 0.85-0.92), and external test set (0.82; 0.78-0.86). Similarly, MCNN demonstrated consistently high accuracy in predicting recurrence, with an AUC of 0.85; 95% CI 0.82-0.88, 0.83; 95% CI 0.80-0.86, and 0.85; 95% CI 0.83-0.88. For patients with a high MCNN-score of recurrence, it was associated with poorer DFS with P < 0.0001 and hazard ratios of 0.1964 (95% CI: 0.1439-0.2680), 0.3249 (95% CI: 0.1896-0.5565), and 0.3458 (95% CI: 0.2582-0.4632). CONCLUSION: The MCNN approach demonstrated high performance in predicting peritoneal recurrence and DFS in patients with AOC.

9.
Bioact Mater ; 39: 191-205, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38808157

RÉSUMÉ

Unnecessary exposure to ionizing radiation (IR) often causes acute and chronic oxidative damages to normal cells and organs, leading to serious physiological and even life-threatening consequences. Amifostine (AMF) is a validated radioprotectant extensively applied in radiation and chemotherapy medicine, but the short half-life limits its bioavailability and clinical applications, remaining as a great challenge to be addressed. DNA-assembled nanostructures especially the tetrahedral framework nucleic acids (tFNAs) are promising nanocarriers with preeminent biosafety, low biotoxicity, and high transport efficiency. The tFNAs also have a relative long-term maintenance for structural stability and excellent endocytosis capacity. We therefore synthesized a tFNA-based delivery system of AMF for multi-organ radioprotection (tFNAs@AMF, also termed nanosuit). By establishing the mice models of accidental total body irradiation (TBI) and radiotherapy model of Lewis lung cancer, we demonstrated that the nanosuit could shield normal cells from IR-induced DNA damage by regulating the molecular biomarkers of anti-apoptosis and anti-oxidative stress. In the accidental total body irradiation (TBI) mice model, the nanosuit pretreated mice exhibited satisfactory alteration of superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents, and functional recovery of hematopoietic system, reducing IR-induced pathological damages of multi-organ and safeguarding mice from lethal radiation. More importantly, the nanosuit showed a selective radioprotection of the normal organs without interferences of tumor control in the radiotherapy model of Lewis lung cancer. Based on a conveniently available DNA tetrahedron-based nanocarrier, this work presents a high-efficiency delivery system of AMF with the prolonged half-life and enhanced radioprotection for multi-organs. Such nanosuit pioneers a promising strategy with great clinical translation potential for radioactivity protection.

10.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38720584

RÉSUMÉ

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Sujet(s)
Dexaméthasone , Lupus érythémateux disséminé , Cellules souches mésenchymateuses , Animaux , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/effets des médicaments et des substances chimiques , Dexaméthasone/pharmacologie , Dexaméthasone/composition chimique , Lupus érythémateux disséminé/thérapie , Lupus érythémateux disséminé/immunologie , Souris , Liposomes/composition chimique , Transplantation de cellules souches mésenchymateuses , Prolifération cellulaire/effets des médicaments et des substances chimiques , Femelle , Souris de lignée MRL lpr , Humains , Lymphocytes T CD4+/immunologie , Lymphocytes T CD4+/effets des médicaments et des substances chimiques , Lymphocytes T CD4+/métabolisme , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique
11.
Inorg Chem ; 63(13): 5908-5915, 2024 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-38494632

RÉSUMÉ

It remains a significant hurdle for discovering birefringent materials in the deep ultraviolet (DUV, λ < 200 nm). It is well-known that the OH anions are recognized for their capability to eliminate the dangling bonds from terminal oxygen atoms, promoting the ultraviolet (UV) cutoff edge blueshift and regulating the crystal structure. Here, two new barium hydroxyborates, Ba3B11O18(OH)3(H2O) (BaBOH) and Na2BaB10O16(OH)2(H2O)2 (NaBaBOH), were designed and synthesized while displaying different dimensions. Remarkably, BaBOH presents novel one-dimensional (1D) [B22O37(OH)6]∞ double-chains formed by a new fundamental building block (FBB)[B11O21(OH)3]. NaBaBOH possesses a 2D [B10O16(OH)2]∞ layer with a less common FBB [B10O19(OH)2]. They enrich the structural diversity of hydroxyborates. Moreover, NaBaBOH exhibits a broad transparent window within the DUV spectral range (<190 nm) and possesses a favorable birefringence of 0.064. Furthermore, detailed summaries and structural comparisons have been implemented for all hydroxyborates containing alkali and alkaline-earth metals. This reveals that the OH group modulation strategy can be appropriately employed for the structural design.

12.
Cell Death Dis ; 15(3): 237, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38555280

RÉSUMÉ

End-stage nasopharyngeal carcinoma (NPC) has unsatisfactory survival. The limited benefit of chemotherapy and the scarcity of targeted drugs are major challenges in NPC. New approaches to treat late-stage NPC are urgently required. In this study, we explored whether the dual PI3K/mTOR inhibitor, PQR309, exerted a favorable antineoplastic effect and sensitized the response to gemcitabine in NPC. We observed that PI3K expression was positive and elevated in 14 NPC cell lines compared with that in normal nasopharygeal cell lines. Patients with NPC with higher PI3K levels displayed poorer prognosis. We subsequently showed that PQR309 alone effectively decreased the viability, invasiveness, and migratory capability of NPC cells and neoplasm development in mice xenograft models, and dose-dependently induced apoptosis. More importantly, PQR309 remarkably strengthened the anti-NPC function of gemcitabine both in vivo and in vitro. Mechanistically, PQR309 sensitized NPC to gemcitabine by increasing caspase pathway-dependent apoptosis, blocking GSK-3ß and STAT3/HSP60 signaling, and ablating epithelial-mesenchyme transition. Thus, targeting PI3K/mTOR using PQR309 might represent a treatment option to promote the response to gemcitabine in NPC, and provides a theoretical foundation for the study of targeted drugs combined with chemotherapy for NPC.


Sujet(s)
Tumeurs du rhinopharynx , Phosphatidylinositol 3-kinases , Facteur de transcription STAT-3 , Humains , Animaux , Souris , Cancer du nasopharynx/traitement médicamenteux , Cancer du nasopharynx/métabolisme , Glycogen synthase kinase 3 beta/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , , Transduction du signal , Sérine-thréonine kinases TOR/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs des phosphoinositide-3 kinases/pharmacologie , Inhibiteurs de mTOR , Inhibiteurs de l'angiogenèse/pharmacologie , Tumeurs du rhinopharynx/anatomopathologie , Lignée cellulaire tumorale , Prolifération cellulaire , Apoptose , Protéines proto-oncogènes c-akt/métabolisme
13.
bioRxiv ; 2024 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-38496565

RÉSUMÉ

A wide diversity of mating systems occur in nature, with frequent evolutionary transitions in mating-compatibility mechanisms. Basidiomycete fungi typically have two mating-type loci controlling mating compatibility, HD and PR, usually residing on different chromosomes. In Microbotryum anther-smut fungi, there have been repeated events of linkage between the two mating-type loci through chromosome fusions, leading to large non-recombining regions. By generating high-quality genome assemblies, we found that two sister Microbotryum species parasitizing Dianthus plants, M. superbum and M. shykoffianum, as well as the distantly related M. scorzonarae, have their HD and PR mating-type loci on different chromosomes, but with the PR mating-type chromosome fused with part of the ancestral HD chromosome. Furthermore, progressive extensions of recombination suppression have generated evolutionary strata. In all three species, rearrangements suggest the existence of a transient stage of HD-PR linkage by whole chromosome fusion, and, unexpectedly, the HD genes lost their function. In M. superbum, multiple natural diploid strains were homozygous, and the disrupted HD2 gene was hardly expressed. Mating tests confirmed that a single genetic factor controlled mating compatibility (i.e. PR) and that haploid strains with identical HD alleles could mate and produce infectious hyphae. The HD genes have therefore lost their function in the control of mating compatibility in these Microbotryum species. While the loss of function of PR genes in mating compatibility has been reported in a few basidiomycete fungi, these are the first documented cases for the loss of mating-type determination by HD genes in heterothallic fungi. The control of mating compatibility by a single genetic factor is beneficial under selfing and can thus be achieved repeatedly, through evolutionary convergence in distant lineages, involving different genomic or similar pathways.

14.
Bone Res ; 12(1): 14, 2024 02 29.
Article de Anglais | MEDLINE | ID: mdl-38424439

RÉSUMÉ

Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.


Sujet(s)
Curcumine , Diabète , Ferroptose , Nanoparticules , Acides nucléiques , Ostéoporose , Humains , Curcumine/pharmacologie , Ostéogenèse , Nanoparticules/usage thérapeutique , Ostéoporose/traitement médicamenteux
15.
J Transl Med ; 22(1): 189, 2024 02 21.
Article de Anglais | MEDLINE | ID: mdl-38383412

RÉSUMÉ

BACKGROUND: Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS: Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS: We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS: Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.


Sujet(s)
Adénocarcinome , Carcinome à grandes cellules , Tumeurs du poumon , Carcinome pulmonaire à petites cellules , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Microdissection , Carcinome pulmonaire à petites cellules/génétique , Carcinome pulmonaire à petites cellules/anatomopathologie , Adénocarcinome/génétique , Carcinome à grandes cellules/génétique , Carcinome à grandes cellules/anatomopathologie , Génomique , Microenvironnement tumoral/génétique
16.
J Magn Reson Imaging ; 2024 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-38205712

RÉSUMÉ

BACKGROUND: Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)-based tumor heterogeneity in assessing ALN metastasis in BC is unclear. PURPOSE: To assess the value of deep learning (DL)-derived kinetic heterogeneity parameters based on BC dynamic contrast-enhanced (DCE)-MRI to infer the ALN status. STUDY TYPE: Retrospective. SUBJECTS: 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. FIELD STRENGTH/SEQUENCE: 1.5 T/3.0 T, non-contrast T1-weighted spin-echo sequence imaging (T1WI), DCE-T1WI, and diffusion-weighted imaging. ASSESSMENT: Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE-MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KHimage (kinetic heterogeneity of DCE-MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. STATISTICAL TESTS: Chi-squared, Fisher's exact, Student's t, Mann-Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. RESULTS: The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785-0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685-0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KHimage scores of 0.527-0.827. DATA CONCLUSION: A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

17.
J Ethnopharmacol ; 323: 117752, 2024 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-38216099

RÉSUMÉ

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY: Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS: Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS: The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION: The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.


Sujet(s)
Berbérine , Diabète de type 2 , Médicaments issus de plantes chinoises , Glucosides d'iridoïdes , Pyrones , Animaux , Souris , Insuline , Protéines proto-oncogènes c-akt , Acide chlorogénique , Simulation de docking moléculaire , Phosphatidylinositol 3-kinases , Acide quinique , Glucose , Médicaments issus de plantes chinoises/pharmacologie , Médicaments issus de plantes chinoises/usage thérapeutique
18.
EMBO J ; 43(3): 339-361, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38238476

RÉSUMÉ

Hematopoietic stem cell (HSC) divisional fate and function are determined by cellular metabolism, yet the contribution of specific cellular organelles and metabolic pathways to blood maintenance and stress-induced responses in the bone marrow remains poorly understood. The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 (encoded by the Mitol gene) is known to regulate mitochondrial and endoplasmic reticulum (ER) interaction and to promote cell survival. Here, we investigated the functional involvement of MITOL in HSC maintenance by generating MX1-cre inducible Mitol knockout mice. MITOL deletion in the bone marrow resulted in HSC exhaustion and impairment of bone marrow reconstitution capability in vivo. Interestingly, MITOL loss did not induce major mitochondrial dysfunction in hematopoietic stem and progenitor cells. In contrast, MITOL deletion induced prolonged ER stress in HSCs, which triggered cellular apoptosis regulated by IRE1α. In line, dampening of ER stress signaling by IRE1α inihibitor KIRA6 partially rescued apoptosis of long-term-reconstituting HSC. In summary, our observations indicate that MITOL is a principal regulator of hematopoietic homeostasis and protects blood stem cells from cell death through its function in ER stress signaling.


Sujet(s)
Endoribonucleases , Protein-Serine-Threonine Kinases , Animaux , Souris , Apoptose , Cellules souches hématopoïétiques/métabolisme , Protein-Serine-Threonine Kinases/génétique , Ubiquitin-protein ligases/génétique , Ubiquitin-protein ligases/métabolisme
19.
Cell Prolif ; 57(6): e13601, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38221742

RÉSUMÉ

Since its discovery in 1978, cisplatin-based chemotherapy regimens have served a pivotal role in human cancer treatment, saving millions of lives. However, its high risk still poses a significant challenge for cisplatin-induced acute kidney injury (AKI), which occurs in 30% of cisplatin-treated patients. Unfortunately, no effective solution for preventing or managing this severe complication, which greatly impacts its clinical administration. Kidney is the main organ injured by cisplatin, and the injury is related to cisplatin-induced cell apoptosis and DNA injury. Therefore, to achieve the safe use of cisplatin in tumour treatment, the key lies in identifying a kidney treatment that can effectively minimize cisplatin nephrotoxicity. Here, we successfully synthesized and applied a DNA-nanostructure complex, named TFG, which contains tetrahedral framework nucleic acids (tFNAs) and FG-4592, a novel Hif-1α inducer. As cargo, TFG is composed entirely of DNA strands. It possesses low nephrotoxicity and renal aggregation properties while FG-4592 is able to relieve renal injury by downregulating the apoptosis signal pathways. And it can relieve cisplatin-induced renal injury when taken cisplatin treatment. This work aims to enhance chemotherapy protection in tumour patients by using TFG, a DNA-based nanomedicines to kidney. This work has the potential to revolutionize the treatment of renal diseases, particularly drug-induced kidney injury, leading to improved clinical outcomes.


Sujet(s)
Atteinte rénale aigüe , Apoptose , Cisplatine , ADN , Sous-unité alpha du facteur-1 induit par l'hypoxie , Nanostructures , Cisplatine/effets indésirables , Atteinte rénale aigüe/induit chimiquement , Animaux , Nanostructures/composition chimique , Nanostructures/usage thérapeutique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , ADN/composition chimique , Humains , Apoptose/effets des médicaments et des substances chimiques , Souris , Antinéoplasiques/effets indésirables , Mâle
20.
J Interpers Violence ; 39(13-14): 2857-2880, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38243808

RÉSUMÉ

College students' individual-level risk factors for sexual assault victimization have been studied for decades, but fewer studies have looked at whether and how campus-level factors, such as campus-level rates of discrimination and campus diversity, might also influence student victimization risk. Identifying these broader factors can inform efforts to develop more effective campus-level sexual assault preventive interventions. We conducted a secondary analysis of data from a large, multi-campus health and well-being survey (N = 309,171 students across 474 US campuses) to explore how campus-level factors shape students' risk of experiencing sexual assault after accounting for students' individual-level risk factors. Using mixed-effects logistic regression, we examined the influence of campus-level factors (e.g., campus sexual orientation demographics and gender diversity) on students' odds of experiencing sexual assault, after accounting for individual risk factors (e.g., sexual and gender minority status). Although some campus characteristics, such as enrollment size, had small significant effects on students' odds of experiencing sexual assault, we found larger significant effects from aggregated campus-level rates of binge drinking, campus diversity (particularly regarding sexual orientation and gender), and discrimination. These findings suggest that comprehensive campus sexual violence prevention would benefit from strategies that promote safe and inclusive campuses, especially for students with marginalized sexual and gender identities.


Sujet(s)
Victimes de crimes , Infractions sexuelles , Étudiants , Humains , Étudiants/statistiques et données numériques , Femelle , Mâle , Universités , Infractions sexuelles/statistiques et données numériques , Facteurs de risque , Jeune adulte , Victimes de crimes/statistiques et données numériques , Adulte , Adolescent , États-Unis , Consommation d'alcool/épidémiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...