Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Agric Food Chem ; 72(36): 19604-19617, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39196612

RÉSUMÉ

The integrated plant-metabolite-soil regulation model of C. Pilosula growth and lobetyolin synthesis in response to continuous cropping lacks systematic investigation. In this study, we investigated the regulatory mechanisms of growth and lobetyolin synthesis in C. pilosula under continuous cropping stress based on high-performance liquid chromatography, transcriptome, and microbial sequencing on the root system and rhizosphere soil of C. pilosula from one year of cultivation and five years of continuous cropping. The findings of this study revealed that continuous cropping significantly inhibited the growth of C. pilosula and led to a notable decrease in the lobetyolin content. An effort was made to propose a potential pathway for lobetyolin biosynthesis in C. pilosula, which is closely linked to the expression of genes responsible for glucoside and unsaturated fatty acid chain synthesis. In addition, soil physicochemical properties and soil microorganisms had strong correlations with root growth and synthesis of lobetyolin, suggesting that soil physicochemical properties and microorganisms are the main factors triggering the succession disorder in C. pilosula. This study provides an in-depth interpretation of the regulatory mechanism of acetylenic glycoside synthesis and offers new insights into the triggering mechanism of C. pilosula succession disorder, which will guide future cultivation and industrial development.


Sujet(s)
Codonopsis , Racines de plante , Plantes médicinales , Sol , Sol/composition chimique , Racines de plante/métabolisme , Racines de plante/croissance et développement , Racines de plante/microbiologie , Racines de plante/composition chimique , Codonopsis/métabolisme , Codonopsis/croissance et développement , Codonopsis/composition chimique , Plantes médicinales/métabolisme , Plantes médicinales/composition chimique , Plantes médicinales/croissance et développement , Plantes médicinales/génétique , Microbiologie du sol , Polyynes/métabolisme , Rhizosphère , Production végétale/méthodes
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39201298

RÉSUMÉ

Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.


Sujet(s)
Chlorure de calcium , Régulation de l'expression des gènes végétaux , Gravitropisme , Peroxyde d'hydrogène , Pisum sativum , Racines de plante , Peroxyde d'hydrogène/métabolisme , Pisum sativum/effets des médicaments et des substances chimiques , Pisum sativum/métabolisme , Pisum sativum/physiologie , Gravitropisme/effets des médicaments et des substances chimiques , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/croissance et développement , Racines de plante/métabolisme , Chlorure de calcium/pharmacologie , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Transcriptome , Lignine/métabolisme , Amidon/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Protéines végétales/métabolisme , Protéines végétales/génétique
3.
Environ Toxicol Chem ; 43(9): 2005-2019, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38988284

RÉSUMÉ

Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.


Sujet(s)
Herbicides , Pisum sativum , Toluidines , Transcriptome , Pisum sativum/effets des médicaments et des substances chimiques , Pisum sativum/génétique , Herbicides/toxicité , Toluidines/toxicité , Transcriptome/effets des médicaments et des substances chimiques , Plant/effets des médicaments et des substances chimiques , Plant/génétique , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Glutathion/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE