Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
1.
Langmuir ; 38(49): 15026-15037, 2022 12 13.
Article de Anglais | MEDLINE | ID: mdl-36459683

RÉSUMÉ

The use of liposomes as drug delivery systems emerged in the last decades in view of their capacity and versatility to deliver a variety of therapeutic agents. By means of small-angle neutron scattering (SANS), we performed a detailed characterization of liposomes containing outer membrane protein F (OprF), the main porin of the Pseudomonas aeruginosa bacterium outer membrane. These OprF-liposomes are the basis of a novel vaccine against this antibiotic-resistant bacterium, which is one of the main hospital-acquired pathogens and causes each year a significant number of deaths. SANS data were analyzed by a specific model we created to quantify the crucial information about the structure of the liposome containing OprF, including the lipid bilayer structure, the amount of protein in the lipid bilayer, the average protein localization, and the effect of the protein incorporation on the lipid bilayer. Quantification of such structural information is important to enhance the design of liposomal delivery systems for therapeutic applications.


Sujet(s)
Protéines bactériennes , Systèmes de délivrance de médicaments , Liposomes , Nanostructures , Porines , Double couche lipidique/composition chimique , Liposomes/composition chimique , Porines/composition chimique , Diffusion aux petits angles , Protéines bactériennes/composition chimique , Nanostructures/composition chimique
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-35889625

RÉSUMÉ

One of the grand challenges of new generation Condensed Matter physicists is the development of novel devices enabling the control of sound propagation at terahertz frequency. Indeed, phonon excitations in this frequency window are the leading conveyor of heat transfer in insulators. Their manipulation is thus critical to implementing heat management based on the structural design. To explore the possibility of controlling the damping of sound waves, we used high spectral contrast Inelastic X-ray Scattering (IXS) to comparatively study terahertz acoustic damping in a dilute suspension of 50 nm nanospheres in glycerol and on pure glycerol. Bayesian inference-based modeling of measured spectra indicates that, at sufficiently large distances, the spectral contribution of collective modes in the glycerol suspension becomes barely detectable due to the enhanced damping, the weakening, and the slight softening of the dominant acoustic mode.

3.
Sci Rep ; 12(1): 4481, 2022 03 16.
Article de Anglais | MEDLINE | ID: mdl-35296691

RÉSUMÉ

Service robotics is a fast-developing sector, requiring embedded intelligence into robotic platforms to interact with the humans and the surrounding environment. One of the main challenges in the field is robust and versatile manipulation in everyday life activities. An appealing opportunity is to exploit compliant end-effectors to address the manipulation of deformable objects. However, the intrinsic compliance of such grippers results in increased difficulties in grasping control. Within the described context, this work addresses the problem of optimizing the grasping of deformable objects making use of a compliant, under-actuated, sensorless robotic hand. The main aim of the paper is, therefore, finding the best position and joint configuration for the mentioned robotic hand to grasp an unforeseen deformable object based on collected RGB image and partial point cloud. Due to the complex grasping dynamics, learning-from-simulations approaches (e.g., Reinforcement Learning) are not effective in the faced context. Thus, trial-and-error-based methodologies have to be exploited. In order to save resources, a samples-efficient approach has to be employed. Indeed, a Bayesian approach to address the optimization of the grasping strategy is proposed, enhancing it with transfer learning capabilities to exploit the acquired knowledge to grasp (partially) new objects. A PAL Robotics TIAGo (a mobile manipulator with a 7-degrees-of-freedom arm and an anthropomorphic underactuated compliant hand) has been used as a test platform, executing a pouring task while manipulating plastic (i.e., deformable) bottles. The sampling efficiency of the data-driven learning is shown, compared to an evenly spaced grid sampling of the input space. In addition, the generalization capability of the optimized model is tested (exploiting transfer learning) on a set of plastic bottles and other liquid containers, achieving a success rate of the 88%.


Sujet(s)
Force de la main , Robotique , Théorème de Bayes , Main , Humains , Matières plastiques , Robotique/méthodes
4.
Sci Rep ; 11(1): 20110, 2021 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-34635734

RÉSUMÉ

In this work, we investigate the possibility of controlling the acoustic damping in a liquid when nanoparticles are suspended in it. To shed light on this topic, we performed Inelastic X-Ray Scattering (IXS) measurements of the terahertz collective dynamics of aqueous suspensions of nanospheres of various materials, size, and relative concentration, either charged or neutral. A Bayesian analysis of measured spectra indicates that the damping of the two acoustic modes of water increases upon nanoparticle immersion. This effect seems particularly pronounced for the longitudinal acoustic mode, which, whenever visible at all, rapidly damps off when increasing the exchanged wavevector. Results also indicate that the observed effect strongly depends on the material the immersed nanoparticles are made of.

5.
Langmuir ; 37(30): 8908-8923, 2021 08 03.
Article de Anglais | MEDLINE | ID: mdl-34286589

RÉSUMÉ

A key to the development of lipid membrane-based devices is a fundamental understanding of how the molecular structure of the lipid bilayer membrane is influenced by the type of lipids used to build the membrane. This is particularly important when membrane proteins are included in these devices since the precise lipid environment affects the ability to incorporate membrane proteins and their functionality. Here, we used neutron reflectometry to investigate the structure of tethered bilayer lipid membranes and to characterize the incorporation of the NhaA sodium proton exchanger in the bilayer. The lipid membranes were composed of two lipids, dioleoyl phosphatidylcholine and cardiolipin, and were adsorbed on gold and silicon substrates using two different tethering architectures based on functionalized oligoethylene glycol molecules of different lengths. In all of the investigated samples, the addition of cardiolipin caused distinct structural rearrangement including crowding of ethylene glycol groups of the tethering molecules in the inner head region and a thinning of the lipid tail region. The incorporation of NhaA in the tethered bilayers following two different protocols is quantified, and the way protein incorporation modulates the structural properties of these membranes is detailed.


Sujet(s)
Double couche lipidique , Nanostructures , Cardiolipides , Or , Silicium
6.
J Med Internet Res ; 23(5): e29058, 2021 05 31.
Article de Anglais | MEDLINE | ID: mdl-33999838

RÉSUMÉ

BACKGROUND: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling. OBJECTIVE: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia. METHODS: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO2/FiO2 ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naïve Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naïve Bayes algorithm with 14 features chosen a priori. RESULTS: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naïve Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively. CONCLUSIONS: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia.


Sujet(s)
COVID-19/mortalité , Apprentissage machine , Théorème de Bayes , COVID-19/anatomopathologie , Études de cohortes , Dossiers médicaux électroniques , Femelle , Humains , Italie/épidémiologie , Mâle , Plan de recherche , Études rétrospectives , Facteurs de risque , SARS-CoV-2/isolement et purification
7.
Phys Rev E ; 102(2-1): 022601, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32942392

RÉSUMÉ

We used inelastic x-ray scattering to gain insight into the complex terahertz dynamics of a diluted Au-nanoparticle suspension in glycerol. We observe that, albeit sparse, Au nanoparticles leave clear signatures on the dynamic response of the system, the main one being an additional mode propagating at the nanoparticle-glycerol interface. A Bayesian inferential analysis of the line shape reveals that such a mode, at variance with conventional acoustic modes, keeps a hydrodynamiclike behavior well beyond the continuous limit and down to subnanometer distances.

8.
Nanomaterials (Basel) ; 10(5)2020 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-32365679

RÉSUMÉ

We used the high-resolution Inelastic X-ray Scattering beamline of the Advanced Photon Source at Argonne National Laboratory to measure the terahertz spectrum of pure water and a dilute aqueous suspension of 15 nm diameter spherical Au nanoparticles (Au-NPs). We observe that, despite their sparse volume concentration of about 0.5%, the immersed NPs strongly influence the collective molecular dynamics of the hosting liquid. We investigate this effect through a Bayesian inference analysis of the spectral lineshape, which elucidates how terahertz transport properties of water change upon Au-NP immersion. In particular, we observe a nearly complete disappearance of the longitudinal acoustic mode and a mildly decreased ability to support shear wave propagation.

9.
J Colloid Interface Sci ; 573: 204-214, 2020 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-32278951

RÉSUMÉ

The use of inorganic nanoparticles in biomedical and biotechnological applications requires a molecular-level understanding of interactions at nano-bio interfaces, such as cell membranes. Several recent reports have shown that gold nanoparticles (AuNP), in the presence of fluid lipid bilayers, aggregate at the lipid/aqueous interface, but the precise origin of this phenomenon is still not fully understood. Here, by challenging synthetic lipid membranes with one of the most typical classes of nanomaterials, citrate-coated AuNP, we addressed the cooperative nature of their interaction at the interface, which leads to AuNP clustering. The ensemble of optical (UV-Vis absorbance), structural (small-angle neutron and X-ray scattering) and surface (X-ray reflectivity, quartz crystal microbalance, atomic force microscopy) results, is consistent with a mechanistic hypothesis, where the citrate-lipid ligand exchange at the interface is the molecular origin of a multiscale cooperative behavior, which ultimately leads to the formation of clusters of AuNP on the bilayer. This mechanism, fully consistent with the data reported so far in the literature for synthetic bilayers, would shed new light on the interaction of engineered nanomaterials with biological membranes. The cooperative nature of ligand exchange at the AuNP-liposome interface, pivotal in determining clustering of AuNP, will have relevant implications for NP use in Nanomedicine, since NP will be internalized in cells as clusters, rather than as primary NP, with dramatic effects on their bioactivity.


Sujet(s)
Or/composition chimique , Lumière , Double couche lipidique/composition chimique , Nanoparticules métalliques/composition chimique , Taille de particule , Techniques de microbalance à cristal de quartz , Propriétés de surface
10.
Materials (Basel) ; 12(18)2019 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-31505798

RÉSUMÉ

In the last few decades, experimental studies of the terahertz spectrum of density fluctuations have considerably improved our knowledge of the mesoscopic dynamics of disordered materials, which also have imposed new demands on the data modelling and interpretation. Indeed, lineshape analyses are no longer limited to the phenomenological observation of inelastic features, as in the pioneering stage of Neutron or X-ray spectroscopy, rather aiming at the extraction from their shape of physically relevant quantities, as sound velocity and damping, relaxation times, or other transport coefficients. In this effort, researchers need to face both inherent and practical obstacles, respectively stemming from the highly damped nature of terahertz modes and the limited energy resolution, accessible kinematic region and statistical accuracy of the typical experimental outcome. To properly address these challenges, a global reconsideration of the lineshape modelling and the enforcement of evidence-based probabilistic inference is becoming crucial. Particularly compelling is the possibility of implementing Bayesian inference methods, which we illustrated here through an in-depth discussion of some results recently obtained in the analysis of Neutron and X-ray scattering results.

11.
Phys Chem Chem Phys ; 21(38): 21456-21463, 2019 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-31535109

RÉSUMÉ

Following the stream of increasing scientific interest in condensed-matter systems under ultra-hydrophobic confinement, the present work reports the first incoherent neutron spin echo assessment of the dynamics of water axially confined inside single-wall carbon nanotubes of diameter d∼ 1.4 nm. At the time scale of nanoseconds, two water populations are retrieved, whose relative proportion matches the one expected for a concentric shell + chain arrangement with cylindrical symmetry. The time dependence of the mean square displacement related to the external component is found to be subdiffusive, with peculiar resemblance to segmental diffusion typical of entangled polymeric systems.

12.
Phys Rev E ; 99(5-1): 052504, 2019 May.
Article de Anglais | MEDLINE | ID: mdl-31212567

RÉSUMÉ

We present a neutron spin echo study of the nanosecond dynamics of polyethylene glycol (PEG) functionalized nanosized gold particles dissolved in D_{2}O at two temperatures and two different PEG molecular weights (400D and 2000D). The analysis of the neutron spin echo data was performed by applying a Bayesian approach to the description of time correlation function decays in terms of exponential terms, recently proved to be theoretically rigorous. This approach, which addresses in a direct way the fundamental issue of model choice in any dynamical analysis, provides here a guide to the most statistically supported way to follow the decay of the intermediate scattering functions I(Q,t) by basing on statistical grounds the choice of the number of terms required for the description of the nanosecond dynamics of the studied systems. Then, the presented analysis avoids from the start resorting to a preselected framework and can be considered as model free. By comparing the results of PEG-coated nanoparticles with those obtained in PEG2000 solutions, we were able to disentangle the translational diffusion of the nanoparticles from the internal dynamics of the polymer grafted to them, and to show that the polymer corona relaxation follows a pure exponential decay in agreement with the behavior predicted by coarse grained molecular dynamics simulations and theoretical models. This methodology has one further advantage: in the presence of a complex dynamical scenario, I(Q,t) is often described in terms of the Kohlrausch-Williams-Watts function that can implicitly represent a distribution of relaxation times. By choosing to describe the I(Q,t) as a sum of exponential functions and with the support of the Bayesian approach, we can explicitly determine when a finer-structure analysis of the dynamical complexity of the system exists according to the available data without the risk of overparametrization. The approach presented here is an effective tool that can be used in general to provide an unbiased interpretation of neutron spin echo data or whenever spectroscopy techniques yield time relaxation data curves.

13.
Small ; 15(23): e1805046, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-31012268

RÉSUMÉ

Understanding the molecular mechanisms governing nanoparticle-membrane interactions is of prime importance for drug delivery and biomedical applications. Neutron reflectometry (NR) experiments are combined with atomistic and coarse-grained molecular dynamics (MD) simulations to study the interaction between cationic gold nanoparticles (AuNPs) and model lipid membranes composed of a mixture of zwitterionic di-stearoyl-phosphatidylcholine (DSPC) and anionic di-stearoyl-phosphatidylglycerol (DSPG). MD simulations show that the interaction between AuNPs and a pure DSPC lipid bilayer is modulated by a free energy barrier. This can be overcome by increasing temperature, which promotes an irreversible AuNP incorporation into the lipid bilayer. NR experiments confirm the encapsulation of the AuNPs within the lipid bilayer at temperatures around 55 °C. In contrast, the AuNP adsorption is weak and impaired by heating for a DSPC-DSPG (3:1) lipid bilayer. These results demonstrate that both the lipid charge and the temperature play pivotal roles in AuNP-membrane interactions. Furthermore, NR experiments indicate that the (negative) DSPG lipids are associated with lipid extraction upon AuNP adsorption, which is confirmed by coarse-grained MD simulations as a lipid-crawling effect driving further AuNP aggregation. Overall, the obtained detailed molecular view of the interaction mechanisms sheds light on AuNP incorporation and membrane destabilization.


Sujet(s)
Cations/pharmacocinétique , Or/pharmacocinétique , Double couche lipidique/métabolisme , Nanoparticules métalliques , Température , Adsorption , Transport biologique , Cations/composition chimique , Or/composition chimique , Interactions hydrophobes et hydrophiles , Double couche lipidique/composition chimique , Lipides membranaires/composition chimique , Lipides membranaires/métabolisme , Nanoparticules métalliques/composition chimique , Simulation de dynamique moléculaire , Phosphatidylcholines/composition chimique , Phosphatidylcholines/métabolisme , Phosphatidylglycérol/composition chimique , Phosphatidylglycérol/métabolisme , Propriétés de surface
14.
J Phys Chem B ; 123(3): 631-638, 2019 01 24.
Article de Anglais | MEDLINE | ID: mdl-30569709

RÉSUMÉ

The understanding of amyloid ß-peptide (Aß) interactions with cellular membranes is a crucial molecular challenge against Alzheimer's disease. Indeed, Aß prefibrillar oligomeric intermediates are believed to be the most toxic species, able to induce cellular damages directly by membrane damage. We present a neutron-scattering study on the interaction of large unilamellar vesicles (LUV), as cell membrane models, with both freshly dissolved Aß and early toxic prefibrillar oligomers, intermediate states in the amyloid pathway. In addition, we explore the effect of coincubating the Aß-peptide with the chaperonin Hsp60, which is known to strongly interact with it in its aggregation pattern. In fact, the interaction of the LUV with coincubated Aß/Hsp60, right after mixing and after following the aggregation protocol leading to the toxic intermediates in the absence of Hsp60, is studied. Neutron spin echo experiments show that the interaction with both freshly dissolved and aggregate Aß species brings about an increase in membrane stiffness, whereas the presence of even very low amounts of Hsp60 (ratio Aß/Hsp60 = 25:1) maintains unaltered the elastic properties of the membrane bilayer. A coherent interpretation of these results, related to previous literature, can be based on the ability of the chaperonin to interfere with Aß aggregation, by the specific recognition of the Aß-reactive transient species. In this framework, our results strongly suggest that early in a freshly dissolved Aß solution are present some species able to modify the bilayer dynamics, and the chaperonin plays the role of an assistant in such stochastic "misfolding events", avoiding the insult on the membrane as well as the onset of the aggregation cascade.


Sujet(s)
Peptides bêta-amyloïdes/métabolisme , Chaperonine-60/métabolisme , Fragments peptidiques/métabolisme , Liposomes unilamellaires/métabolisme , Animaux , Bovins , Gangliosides/composition chimique , Double couche lipidique/composition chimique , Double couche lipidique/métabolisme , Phosphatidylcholines/composition chimique , Phosphatidylsérine/composition chimique , Multimérisation de protéines , Liposomes unilamellaires/composition chimique
15.
ACS Nano ; 12(9): 8867-8874, 2018 Sep 25.
Article de Anglais | MEDLINE | ID: mdl-30052427

RÉSUMÉ

The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybrid-liquid and solid-materials.

16.
Soft Matter ; 14(8): 1482-1491, 2018 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-29400392

RÉSUMÉ

Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) have been used to investigate the temperature-dependent solution behaviour of highly-branched poly(N-isopropylacrylamide) (HB-PNIPAM). SANS experiments have shown that water is a good solvent for both HB-PNIPAM and a linear PNIPAM control at low temperatures where the small angle scattering is described by a single correlation length model. Increasing the temperature leads to a gradual collapse of HB-PNIPAM until above the lower critical solution temperature (LCST), at which point aggregation occurs, forming disperse spherical particles of up to 60 nm in diameter, independent of the degree of branching. However, SANS from linear PNIPAM above the LCST is described by a model that combines particulate structure and a contribution from solvated chains. NSE was used to study the internal and translational solution dynamics of HB-PNIPAM chains below the LCST. Internal HB-PNIPAM dynamics is described well by the Rouse model for non-entangled chains.

17.
Langmuir ; 33(38): 9988-9996, 2017 09 26.
Article de Anglais | MEDLINE | ID: mdl-28845995

RÉSUMÉ

OprF has a central role in Pseudomonas aeruginosa virulence and thus provides a putative target for either vaccines or antibiotic cofactors that could overcome the bacterium's natural resistance to antibiotics. Here we describe a procedure to optimize the production of highly pure and functional OprF porins that are then incorporated into a tethered lipid bilayer. This is a stable biomimetic system that provides the capability to investigate structural aspects and function of OprF using and neutron reflectometry and electrical impedance spectroscopy. The recombinant OprF produced using the optimized cell-free procedure yielded a quantity of between 0.5 to 1.0 mg/mL with a purity ranging from 85 to 91% in the proteoliposomes. The recombinant OprF is capable of binding IFN-γ and is correctly folded in the proteoliposomes. Because OprF proteins form pores the biomimetic system allowed the measurement of OprF conductance using impedance spectroscopy. The neutron reflectometry measurements showed that the OprF protein is incorporated into the lipid bilayer but with parts of the protein in both the regions above and below the lipid bilayer. Those structural aspects are coherent with the current assumed structure of a transmembrane N-terminal domain composed by eight stranded beta-barrels and a globular C-terminal domain located in the periplasm. Currently there are no crystal structures available for OprF. The experimental model system that we describe provides a basis for further fundamental studies of OprF and particularly for the ongoing biotechnological development of OprF as a target for antibacterial drugs.


Sujet(s)
Pseudomonas aeruginosa , Phénomènes biophysiques , Double couche lipidique , Porines , Conformation des protéines
18.
J Colloid Interface Sci ; 504: 741-750, 2017 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-28623699

RÉSUMÉ

HYPOTHESIS: It is known that nanoparticles (NPs) in a biological fluid are immediately coated by a protein corona (PC), composed of a hard (strongly bounded) and a soft (loosely associated) layers, which represents the real nano-interface interacting with the cellular membrane in vivo. In this regard, supported lipid bilayers (SLB) have extensively been used as relevant model systems for elucidating the interaction between biomembranes and NPs. Herein we show how the presence of a PC on the NP surface changes the interaction between NPs and lipid bilayers with particular care on the effects induced by the NPs on the bilayer structure. EXPERIMENTS: In the present work we combined Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) and Neutron Reflectometry (NR) experimental techniques to elucidate how the NP-membrane interaction is modulated by the presence of proteins in the environment and their effect on the lipid bilayer. FINDINGS: Our study showed that the NP-membrane interaction is significantly affected by the presence of proteins and in particular we observed an important role of the soft corona in this phenomenon.

19.
Sci Rep ; 7: 41092, 2017 01 23.
Article de Anglais | MEDLINE | ID: mdl-28112231

RÉSUMÉ

Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.


Sujet(s)
Régulation allostérique/génétique , Protéines bactériennes/métabolisme , Eucaryotes/enzymologie , L-Lactate dehydrogenase/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Sites de fixation , Domaine catalytique , Eucaryotes/génétique , L-Lactate dehydrogenase/composition chimique , L-Lactate dehydrogenase/génétique , Imagerie par résonance magnétique , Simulation de dynamique moléculaire , Liaison aux protéines , Conformation des protéines , Température
20.
Protein Sci ; 26(3): 505-514, 2017 03.
Article de Anglais | MEDLINE | ID: mdl-27977887

RÉSUMÉ

Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide-angle X-ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.


Sujet(s)
Carboxyhémoglobine/composition chimique , Acide phytique/composition chimique , Régulation allostérique , Carboxyhémoglobine/métabolisme , Humains , Acide phytique/métabolisme , Liaison aux protéines , Diffraction des rayons X
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE