Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biosens Bioelectron ; 260: 116419, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38830292

RÉSUMÉ

Microbatteries are emerging as a sustainable, miniaturized power source, crucial for implantable biomedical devices. Their significance lies in offering high energy density, longevity, and rechargeability, facilitating uninterrupted health monitoring and treatment within the body. The review delves into the development of microbatteries, emphasizing their miniaturization and biocompatibility, crucial for long-term, safe in-vivo use. It examines cutting-edge manufacturing techniques like physical and chemical vapor deposition, and atomic layer deposition, essential for the precision manufacture of the microbatteries. The paper contrasts primary and secondary batteries, highlighting the advantages of zinc-ion and magnesium-ion batteries for enhanced stability and reduced reactivity. It also explores biodegradable batteries, potentially obviating the need for surgical extraction post-use. The integration of microbatteries into diagnostic and therapeutic devices is also discussed, illustrating how they enhance the efficacy and sustainability of implantable biosensors and bioelectronics.


Sujet(s)
Techniques de biocapteur , Alimentations électriques , Prothèses et implants , Techniques de biocapteur/instrumentation , Humains , Conception d'appareillage , Miniaturisation , Animaux
2.
Adv Mater ; 36(26): e2312340, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38578242

RÉSUMÉ

The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m2 g-1 and a saturated magnetization of 142.7 Am2 kg-1. The size of the PCS can be controlled through the Ostwald ripening mechanism, while the porous structure can be regulated by adjusting the metal-to-ligand mol ratio. Its exceptional compatibility with poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) enables the creation of uniform electrode, crucial for producing soft actuators that work in both magnetic and electrical fields. Operated at an ultralow voltage of 1 V, the PCS-based actuator generates a blocking force of 47.5 mN and exhibits significant bending deflection even at an oscillation frequency of 10 Hz. Employing this simultaneous multimodal actuation ensures the dynamic and complex motions of a balancing bird robot and a dynamic eagle robot. This advancement marks a significant step toward the realization of more dynamic and versatile soft robotic systems.

3.
Article de Anglais | MEDLINE | ID: mdl-38684057

RÉSUMÉ

MXenes are highly versatile and conductive 2D materials that can significantly enhance the triboelectric properties of polymer nanocomposites. Despite the growing interest in the tunable chemistry of MXenes for energy applications, the effect of their chemical composition on triboelectric power generation has yet to be thoroughly studied. Here, we investigate the impact of the chemical composition of MXenes, specifically the Ti3CNTx carbonitride vs the most studied carbide, Ti3C2Tx, on their interactions with sodium alginate biopolymer and, ultimately, the performance of a triboelectric nanogenerator (TENG) device. Our results show that adding 2 wt % of Ti3CNTx to alginate produces a synergistic effect that generates a higher triboelectric output than the Ti3C2Tx system. Spectroscopic analyses suggest that a higher oxygen and fluorine content on the surface of Ti3CNTx enhances hydrogen bonding with the alginate matrix, thereby increasing the surface charge density of the alginate oxygen atoms. This was further supported by Kelvin probe force microscopy, which revealed a more negative surface potential on Ti3CNTx-alginate, facilitating high charge transfer between the TENG electrodes. The optimized Ti3CNTx-alginate nanogenerator delivered an output of 670 V, 15 µA, and 0.28 W/m2. Additionally, we demonstrate that plasma oxidation of the MXene surface further enhances triboelectric performance. Due to the diverse surface terminations of MXene, we show that Ti3CNTx-alginate can function as either tribopositive or tribonegative material, depending on the counter-contacting material. Our findings provide a deeper understanding of how MXene composition affects their interaction with biopolymers and resulting tunable triboelectrification behavior. This opens up new avenues for developing flexible and efficient MXene-based TENG devices.

4.
Nat Commun ; 15(1): 435, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38200009

RÉSUMÉ

Electro-active ionic soft actuators have been intensively investigated as an artificial muscle for soft robotics due to their large bending deformations at low voltages, small electric power consumption, superior energy density, high safety and biomimetic self-sensing actuation. However, their slow responses, poor durability and low bandwidth, mainly resulting from improper distribution of ionic conducting phase in polyelectrolyte membranes, hinder practical applications to real fields. We report a procedure to synthesize efficient polyelectrolyte membranes that have continuous conducting network suitable for electro-ionic artificial muscles. This functionally antagonistic solvent procedure makes amphiphilic Nafion molecules to assemble into micelles with ionic surfaces enclosing non-conducting cores. Especially, the ionic surfaces of these micelles combine together during casting process and form a continuous ionic conducting phase needed for high ionic conductivity, which boosts the performance of electro-ionic soft actuators by 10-time faster response and 36-time higher bending displacement. Furthermore, the developed muscle shows exceptional durability over 40 days under continuous actuation and broad bandwidth below 10 Hz, and is successfully applied to demonstrate an inchworm-mimetic soft robot and a kinetic tensegrity system.

5.
Adv Sci (Weinh) ; 11(14): e2307656, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38286669

RÉSUMÉ

Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs. The JCMS is produced asymmetrically through gravitational sedimentation, employing spherical CoMOFs within a diluted SEBS solution. Beyond its dual dielectric characteristics, the JCMS showcases exceptional mechanical durability, displaying notable stretchability of up to 475% and remarkable resilience when subjected to diverse mechanical pressures. Consequently, the JCMS-TENG produces a maximum peak-to-peak voltage of 936 V, a current of 42.8 µA, and a power density of 10.89 W m- 2 when exposed to an external force of 10 N at a 5 Hz frequency. This investigation highlights the potential of JCMS-TENGs with unique structures, known for their exceptional energy harvesting capabilities, mechanical strength, and flexibility. Additionally, the promising prospects of easily produced asymmetric structures is emphasized with bifunctionalities for developing efficient and flexible MOFs-based TENGs. These advancements are well-suited for self-powered wearables, rehabilitation devices, and energy harvesters.

6.
Sci Adv ; 9(50): eadk9752, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-38091394

RÉSUMÉ

Tailoring transfer dynamics of mobile cations across solid-state electrolyte-electrode interfaces is crucial for high-performance electrochemical soft actuators. In general, actuation performance is directly proportional to the affinity of cations and anions in the electrolyte for the opposite electrode surfaces under an applied field. Herein, to maximize electrochemical actuation, we report an electronically conjugated polysulfonated covalent organic framework (pS-COF) used as a common electrolyte-electrode host for 1-ethyl-3-methylimidazolium cation embedded into a Nafion membrane. The pS-COF-based electrochemical actuator exhibits remarkable bending deflection at near-zero voltage (~0.01 V) and previously unattainable blocking force, which is 34 times higher than its own weight. The ultrafast step response shows a very short rising time of 1.59 seconds without back-relaxation, and substantial ultralow-voltage actuation at higher frequencies up to 5.0 hertz demonstrates good application prospects of common electrolyte-electrode hosts. A soft fluidic switch is constructed using the proposed soft actuator as a potential engineering application.

7.
Adv Mater ; 35(47): e2304442, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37724828

RÉSUMÉ

Wearable haptic interfaces prioritize user comfort, but also value the ability to provide diverse feedback patterns for immersive interactions with the virtual or augmented reality. Here, to provide both comfort and diverse tactile feedback, an easy-to-wear and multimodal wearable haptic auxetic fabric (WHAF) is prepared by knotting shape-memory alloy wires into an auxetic-structured fabric. This unique meta-design allows the WHAF to completely expand and contract in 3D, providing superior size-fitting and shape-fitting capabilities. Additionally, a microscale thin layer of Parylene is coated on the surface to create electrically separated zones within the WHAF, featuring zone-specified actuation for conveying diverse spatiotemporal information to users with using the WHAF alone. Depending on the body part it is worn on, the WHAF conveys either cutaneous or kinesthetic feedback, thus, working as a multimodal wearable haptic interface. As a result, when worn on the forearm, the WHAF intuitively provides spatiotemporal information to users during hands-free navigation and teleoperation in virtual reality, and when worn on the elbow, the WHAF guides users to reach the desired elbow flexion, like a personal exercise advisor.


Sujet(s)
Perception du toucher , Dispositifs électroniques portables , Interfaces haptiques , Rétroaction , Technologie haptique , Conception d'appareillage , Interface utilisateur
8.
Small ; 19(30): e2301847, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37170694

RÉSUMÉ

An electronically conjugated functional triazine framework is used to synthesize a physicochemically interlocked sulfur cathode that delivers high energy density coupled with exceptional cycle life in lithium-sulfur batteries. Conventional melt-diffusion strategies to impregnate sulfur in the cathode offer poor cycle life due to physical mixing with weak interactions. By contrast, in this approach, sulfur is physicochemically entrapped within a nanoporous and heteroatom doped high surface area covalent triazine framework, resulting in outstanding electrochemical performance (≈89% capacity retention after 1000 cycles, the energy density of ≈2,022 Wh kg-1 sulfur and high-rate capability up to 12 C). The overall structural characteristics and interactions of sulfur with the covalent triazine framework are explored in detail to explain the intriguing properties of the sulfur cathode.

9.
Small ; 19(23): e2207140, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36908006

RÉSUMÉ

The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g-1 ) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm-2 ) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1 V, the dual-responsive actuator displays bending displacement of 15.46 mm and also generates deflection of 10 mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.

10.
Adv Mater ; 34(35): e2203613, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35772104

RÉSUMÉ

There is growing demand for multiresponsive soft actuators for the realization of natural, safe, and complex motions in robotic interactions. In particular, soft actuators simultaneously stimulated by electrical and magnetic fields are always under development owing to their simple controllability and reliability during operation. Herein, magnetically and electrically driven dual-responsive soft actuators (MESAs) derived from novel nickel-based metal-organic frameworks (Ni-MOFs-700C), are reported. Nanoscale Ni-MOFs-700C has excellent electrochemical and magnetic properties that allow it to be used as a multifunctional material under both magnetoactive and electro-ionic actuations. The dual-responsive MESA exhibits a bending displacement of 30 mm and an ultrafast rising time of 1.5 s under a very low input voltage of 1 V and also exerts a bending deflection of 12.5 mm at 50 mT under a high excitation frequency of 5 Hz. By utilizing a dual-responsive MESA, the hovering motion of a hummingbird robot is demonstrated under magnetic and electrical stimuli.

11.
Adv Sci (Weinh) ; 8(23): e2102064, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34693658

RÉSUMÉ

Emerging technologies such as soft robotics, active biomedical devices, wearable electronics, haptic feedback systems, and healthcare systems require high-fidelity soft actuators showing reliable responses under multi-stimuli. In this study, the authors report an electro-active and photo-active soft actuator based on a vanadium oxide nanowire (VONW) hybrid film with greatly improved actuation performances. The VONWs directly grown on a cellulose fiber network increase the surface area up to 30-fold and boost the hydrophilicity owing to the presence of oxygen-rich functional groups in the nanowire surfaces. Taking advantage of the high surface area and hydrophilicity of VONWs, a soft thermo-hygroscopic VONW actuator capable of being controlled by both light and electric sources shows greatly enhanced actuation deformation by almost 70% and increased actuation speed over 3 times during natural convection cooling. Most importantly, the proposed VONW actuator exhibits a remarkably improved blocking force of up to 200% compared with a bare paper actuator under light stimulation, allowing them to realize a complex kirigami pop-up and to accomplish repeatable shape transformation from a 2D planar surface to a 3D configuration.

12.
Adv Sci (Weinh) ; 8(8): 2001676, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33898165

RÉSUMÉ

Pyrazole-linked covalent organic polymer is synthesized using an asynchronous double Schiff base from readily available monomers. The one-pot reaction features no metals as a building block or reagent, hence facilitating the structural purity and industrial scalability of the design. Through a single-crystal study on a model compound, the double Schiff base formation is found to follow syn addition, a kinetically favored product, suggesting that reactivity of the amine and carbonyls dictate the order and geometry of the framework building. The highly porous pyrazole polymer COP-214 is chemically resistant in reactive conditions for over two weeks and thermally stable up to 425 °C in air. COP-214 shows well-pronounced gas capture and selectivities, and a high CO2/N2 selectivity of 102. The strongly coordinating pyrazole sites show rapid uptake and quantitative selectivity of Pd (II) over several coordinating metals (especially Pt (II)) at all pH points that are tested, a remarkably rare feature that is best explained by detailed analysis as the size-selective strong coordination of Pd onto pyrazoles. Density functional theory (DFT) calculations show energetically favorable Pd binding between the metal and N-sites of COP-214. The polymer is reusable multiple times without loss of activity, providing great incentives for an industrial prospect.

13.
ACS Appl Mater Interfaces ; 13(1): 219-232, 2021 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-33375776

RÉSUMÉ

The application of biodegradable and biocompatible materials to triboelectric nanogenerators (TENGs) for harvesting energy from motions of the human body has been attracting significant research interest. Herein, we report diatom bio-silica as a biomaterial additive to enhance the output performance of cellulose nanofibril (CNF)-based TENGs. Diatom frustules (DFs), which are tribopositive bio-silica having hierarchically porous three-dimensional structures and high surface area, have hydrogen bonds with CNFs, resulting in enhanced electron-donating capability and a more roughened surface of the DF-CNF composite film. Hence, DFs were applied to form a tribopositive composite film with CNFs. The DF-CNF biocomposite film is mechanically strong, electron-rich, low-cost, and frictionally rough. The DF-CNF TENG showed an output voltage of 388 V and time-averaged power of 85.5 mW/m2 in the contact-separation mode with an efficient contact area of 4.9 cm2, and the generated power was sufficient for instantaneous illumination of 102 light-emitting diodes. In addition, a cytotoxicity study and biocompatibility tests on rabbit skin suggested that the DF-CNF composite was biologically safe. Moreover, a practical application of the DF-CNF TENG was examined with a self-powered smart mask for human breathing monitoring. This study not only suggests high output performance of biomaterial-based TENGs but also presents the diverse advantages of the DFs in human body-related applications such as self-powered health monitoring masks, skin-attachable power generators, and tactile feedback systems.


Sujet(s)
Cellulose/composition chimique , Alimentations électriques , Masques , Nanofibres/composition chimique , Silice/composition chimique , Dispositifs électroniques portables , Animaux , Tests d'analyse de l'haleine/instrumentation , Cellulose/toxicité , Diatomées/composition chimique , Eucalyptus/composition chimique , Humains , Mâle , Monitorage physiologique/instrumentation , Nanofibres/toxicité , Lapins , Silice/toxicité , Peau/effets des médicaments et des substances chimiques , Résistance à la traction
14.
Nat Commun ; 11(1): 5358, 2020 10 23.
Article de Anglais | MEDLINE | ID: mdl-33097728

RÉSUMÉ

In the field of bioinspired soft robotics, to accomplish sophisticated tasks in human fingers, electroactive artificial muscles are under development. However, most existing actuators show a lack of high bending displacement and irregular response characteristics under low input voltages. Here, based on metal free covalent triazine frameworks (CTFs), we report an electro-ionic soft actuator that shows high bending deformation under ultralow input voltages that can be implemented as a soft robotic touch finger on fragile displays. The as-synthesized CTFs, derived from a polymer of intrinsic microporosity (PIM-1), were combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to make a flexible electrode for a high-performance electro-ionic soft actuator. The proposed soft touch finger showed high peak-to-peak displacement of 17.0 mm under ultralow square voltage of ±0.5 V, with 0.1 Hz frequency and 4 times reduced phase delay in harmonic response compared with that of a pure PEDOT-PSS-based actuator. The significant actuation performance is mainly due to the unique physical and chemical configurations of CTFs electrode with highly porous and electrically conjugated networks. On a fragile display, the developed soft robotic touch finger array was successfully used to perform soft touching, similar to that of a real human finger; device was used to accomplish a precise task, playing electronic piano.

15.
Nanoscale ; 12(40): 20868-20874, 2020 Oct 22.
Article de Anglais | MEDLINE | ID: mdl-33043946

RÉSUMÉ

Herein, we report vanadium carbide (V8C7) nanowires (NWs) axially grown on carbon cloths (CCs) as a dual-ion accepting cathode for both lithium (LIBs) and sodium-ion batteries (SIBs). Using a facile hydrothermal method, we grew V2O3 NWs on CCs and subsequently reduced them to V8C7 by annealing with carbon sources under a H2/Ar atmosphere. In striking contrast to V2O5 NW cathodes obtained by annealing under air, the V8C7 NWs exhibit outstanding cycling stability during 500 cycles, and good rate capability for both LIBs and SIBs. V8C7 NWs as cathode active materials for LIBs exhibited 203.9 mA h g-1 specific capacity at 0.1 C after 500 cycles, 91.12% cycling retention and a coulombic efficiency of 99.84%. As cathodes in SIBs, the V8C7 NWs delivered 176.34 mA h g-1 specific capacity at 0.1 C during 300 cycles. Their defect sites by removal of the oxygen framework in V2O3 NWs have a high surface area (183.27 m2 g-1) and the unique 1D NW structure highly mitigates the volume changes during charge and discharge showing a superior electrochemical performance. Compared to commercially available cathodes, V8C7 nanowires have very good cycling stability and enhanced electrical conductivity. Moreover, the synergistic effect with 3D CCs utilized here as a current collector provides a large number of cation-accessible active sites in conjunction with high electrical conductivity and chemical stability.

16.
ACS Appl Mater Interfaces ; 12(10): 11657-11668, 2020 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-32109039

RÉSUMÉ

Herein, we report a straigthforward procedure to prepare an excellent intertwined nanosponge solid-state polymer electrolyte (INSPE) for highly bendable, rollable, and foldable lithium-ion batteries (LIBs). The mechanically reliable and electrochemically superior INSPE is conjugated with intertwined nanosponge (IN) poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and ion-conducting polymer electrolyte (PE) containing poly(ethylene glycol) diacrylate (PEGDA), succinonitrile (SCN) plasticizer, and lithium bis(trifluoromethanesilfonyl)imide (LiTFSI). The conjugated INSPE has both high strength with great flexibility (tensile strength of 2.1 MPa, elongation of 36.7%), and excellent ionic conductivity (1.04 × 10-3 S·cm-1, similar to the values of liquid electrolytes). As a result of such special combination, the as-prepared INSPE retains almost 100% of its ionic conductivity when subjected to many types of severe mechanical deformations. Therefore, the INSPE is successfully applied to bendable, rollable, and foldable LIBs that show excellent energy storage performance despite the intense mechanical deformations.

17.
Adv Sci (Weinh) ; 6(23): 1901711, 2019 Dec.
Article de Anglais | MEDLINE | ID: mdl-31832318

RÉSUMÉ

Here, inspired by mechanoreceptors in the human body, a self-sensing ionic soft actuator is developed that precisely senses the bending motions during actuating utilizing a 3D graphene mesh electrode. The graphene mesh electrode has the permeability of mobile ions inside the ionic exchangeable polymer and shows low electrical resistance of 6.25 Ω Sq-1, maintaining high electrical conductivity in large bending deformations of 180°. In this sensing system, the graphene woven mesh is embedded inside ionic polymer membrane to interact with mobile ions and to trace their movements. The migration of mobile ions inside the membrane induces an electrical signal on the mesh and provides the information regarding ion distribution, which is proven to be highly correlated with the bending deformation of the actuator. Using this integrated self-sensing system, the responses of an ionic actuator to various input stimulations are precisely estimated for both direct current and alternating current inputs. Even though the generated displacement is extremely small around 300 µm at very low driving voltage of 0.1 V, high level accuracy (96%) of estimated deformations could be achieved using the self-sensing actuator system.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...