Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Article de Russe | MEDLINE | ID: mdl-15481395

RÉSUMÉ

A hypothesis for the existence of the intrasynaptic ephaptic feedback (EFB) in the invertebrate central nervous sytem was tested. Excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) evoked by the activation of the recently described monosynaptic connection between the identified snail neurons were recorded intracellularly. In case of the EFB presence, the postsynaptic tetanization with hyperpolarization pulses could activate presynaptic Ca2+ channels and enhance the EPSP amplitude, whereas a steady postsynaptic hyperpolarization should induce a "supralinear" increase in EPSC amplitudes as it has been found in the rat hippocampus. In the first series of the experiments, 10 trains of hyperpolarizing pulses (40-50 mV, 1 Hz, pulse duration 0.5 s, train duration 45 s) were delivered postsynaptically. No significant changes in EPSP amplitudes were found. In the second series of the experiments, the EPSC amplitudes were measured during varying postsynaptic hyperpolarization. At the membrane potential 100 mV, the EPSP amplitude was significantly higher than theoretically predicted from the classical linear dependence. Such a "supralinear" effect of postsynaptic depolarization can be explained by the presence of the EFB. This finding is the first evidence for the EFB existence in the invertebrate central nervous system.


Sujet(s)
Système nerveux central/physiologie , Potentiels post-synaptiques excitateurs/physiologie , Escargots/physiologie , Synapses/physiologie , Animaux , Canaux calciques/physiologie , Stimulation électrique , Rétroaction , Potentiels de membrane/physiologie , Terminaisons présynaptiques/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE